1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkLabelGeometryImageFilter_hxx
#define itkLabelGeometryImageFilter_hxx
#include "itkLabelGeometryImageFilter.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkCastImageFilter.h"
#include "itkAffineTransform.h"
#include "itkResampleImageFilter.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
namespace itk
{
//
// Helper functions
//
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::MatrixType
CalculateRotationMatrix(vnl_symmetric_eigensystem< double > eig)
{
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::MatrixType
rotationMatrix(TLabelImage::ImageDimension, TLabelImage::ImageDimension, 0);
for ( unsigned int i = 0; i < TLabelImage::ImageDimension; i++ )
{
rotationMatrix.set_column( i, eig.get_eigenvector(i) );
}
// After vnl_symmetric_eigensystem, the columns of V are the eigenvectors,
// sorted by increasing eigenvalue, from most negative to most positive.
// First reorder the eigenvectors by decreasing eigenvalue.
rotationMatrix.fliplr();
// Next, check whether the determinant of the matrix is negative.
// If it is, then the vectors do not follow the right-hand rule. We
// can fix this by making one of them negative. Make the last
// eigenvector (with smallest eigenvalue) negative.
float matrixDet;
if ( TLabelImage::ImageDimension == 2 )
{
matrixDet = vnl_det(rotationMatrix[0], rotationMatrix[1]);
}
else if ( TLabelImage::ImageDimension == 3 )
{
matrixDet = vnl_det(rotationMatrix[0], rotationMatrix[1], rotationMatrix[2]);
}
else
{
matrixDet = 0.0f;
std::cerr << "ERROR: Determinant cannot be calculated for this dimension!" << std::endl;
}
if ( matrixDet < 0 )
{
rotationMatrix.set_column( TLabelImage::ImageDimension - 1,
-rotationMatrix.get_column(TLabelImage::ImageDimension - 1) );
}
// Transpose the matrix to yield the rotation matrix.
rotationMatrix.inplace_transpose();
return rotationMatrix;
}
template< typename TLabelImage, typename TIntensityImage, typename TGenericImage >
bool
CalculateOrientedImage(
LabelGeometryImageFilter< TLabelImage, TIntensityImage > *filter,
vnl_symmetric_eigensystem< double > eig,
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::LabelGeometry & labelGeometry,
bool useLabelImage)
{
// CalculateOrientedBoundingBoxVertices needs to have already been
// called. This is taken care of by the flags.
// Rotate the original object to align with the coordinate
// system defined by the eigenvectors.
// Since the resampler moves from the output image to the input
// image, we take the transpose of the rotation matrix.
typename LabelGeometryImageFilter< TLabelImage,
TIntensityImage >::MatrixType vnl_RotationMatrix =
CalculateRotationMatrix< TLabelImage, TIntensityImage >(eig);
vnl_RotationMatrix.inplace_transpose();
// Set up the transform. Here the center of rotation is the
// centroid of the object, the rotation matrix is specified by the
// eigenvectors, and there is no translation.
typedef itk::AffineTransform< double, TLabelImage::ImageDimension > TransformType;
typename TransformType::Pointer transform = TransformType::New();
typename TransformType::MatrixType rotationMatrix(vnl_RotationMatrix);
typename TransformType::CenterType center;
typename TGenericImage::PointType origin;
for( unsigned int i = 0; i < TLabelImage::ImageDimension; i++ )
{
center[i] = labelGeometry.m_Centroid[i] * filter->GetInput()->GetSpacing()[i];
origin[i] = labelGeometry.m_OrientedBoundingBoxOrigin[i] * filter->GetInput()->GetSpacing()[i];
}
typename TransformType::OutputVectorType translation;
translation.Fill(0);
transform->SetCenter(center);
transform->SetTranslation(translation);
transform->SetMatrix(rotationMatrix);
typedef itk::ResampleImageFilter< TGenericImage, TGenericImage > ResampleFilterType;
typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
// The m_OrientedBoundingBoxSize is specified to float precision.
// Here we need an integer size large enough to contain all of the points, so
// we take the ceil of it.
// We also need to ensure that that bounding box is not outside of
// the image bounds.
typename ResampleFilterType::SizeType boundingBoxSize;
for ( unsigned int i = 0; i < TLabelImage::ImageDimension; i++ )
{
boundingBoxSize[i] = ( typename ResampleFilterType::SizeType::SizeValueType )std::ceil(
labelGeometry.m_OrientedBoundingBoxSize[i]);
}
resampler->SetTransform(transform);
resampler->SetSize(boundingBoxSize);
resampler->SetOutputSpacing( filter->GetInput()->GetSpacing() );
resampler->SetOutputOrigin( origin );
if ( useLabelImage )
{
// Set up the interpolator.
// Use a nearest neighbor interpolator since these are labeled images.
typedef itk::NearestNeighborInterpolateImageFunction< TGenericImage, double > InterpolatorType;
typename InterpolatorType::Pointer interpolator = InterpolatorType::New();
resampler->SetInterpolator(interpolator);
// Cast the type to enable compilation.
typedef itk::CastImageFilter< TLabelImage, TGenericImage > CastType;
typename CastType::Pointer caster = CastType::New();
caster->SetInput( filter->GetInput() );
resampler->SetInput( caster->GetOutput() );
resampler->Update();
labelGeometry.m_OrientedLabelImage->Graft( resampler->GetOutput() );
}
else
{
// If there is no intensity input defined, return;
if ( !filter->GetIntensityInput() )
{
return true;
}
// Set up the interpolator.
// Use a linear interpolator since these are intensity images.
typedef itk::LinearInterpolateImageFunction< TGenericImage, double > InterpolatorType;
typename InterpolatorType::Pointer interpolator = InterpolatorType::New();
resampler->SetInterpolator(interpolator);
// Cast the type to enable compilation.
typedef itk::CastImageFilter< TIntensityImage, TGenericImage > CastType;
typename CastType::Pointer caster = CastType::New();
caster->SetInput( filter->GetIntensityInput() );
resampler->SetInput( caster->GetOutput() );
resampler->Update();
labelGeometry.m_OrientedIntensityImage->Graft( resampler->GetOutput() );
}
return true;
}
template< typename TLabelImage, typename TIntensityImage >
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::LabelGeometryImageFilter()
{
this->SetNumberOfRequiredInputs(1);
m_CalculatePixelIndices = false;
m_CalculateOrientedBoundingBox = false;
m_CalculateOrientedLabelRegions = false;
m_CalculateOrientedIntensityRegions = false;
}
template< typename TLabelImage, typename TIntensityImage >
void
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GenerateData()
{
LabelPixelType label;
// Iterator over the label image.
ImageRegionConstIterator< TLabelImage > labelIt ( this->GetInput(),
this->GetInput()->GetBufferedRegion() );
typedef ImageRegionConstIteratorWithIndex< TLabelImage > ImageIteratorWithIndexType;
// Iterator over the mapping from labels to geometry values.
MapIterator mapIt;
// begin with empty m_LabelGeometryMapper and m_AllLabels
m_LabelGeometryMapper.clear();
m_AllLabels.clear();
// Do the work
while ( !labelIt.IsAtEnd() )
{
label = labelIt.Get();
mapIt = m_LabelGeometryMapper.find(label);
// Is the label already in the mapper?
// If not, create a new geometry object.
if ( mapIt == m_LabelGeometryMapper.end() )
{
typedef typename MapType::value_type MapValueType;
// map insert is defined as: pair<iterator, bool> insert(const value_type&
// x)
mapIt = m_LabelGeometryMapper.insert( MapValueType( label, LabelGeometry() ) ).first;
}
// Update the geometry values.
// LABEL
( *mapIt ).second.m_Label = label;
// BOUNDING BOX
// The bounding box is defined in (min, max) pairs, such as
// (xmin,xmax,ymin,ymax,zmin,zmax).
typename ImageIteratorWithIndexType::IndexType index = labelIt.GetIndex();
for ( unsigned int i = 0; i < ( 2 * ImageDimension ); i += 2 )
{
// Update min
if ( ( *mapIt ).second.m_BoundingBox[i] > index[i / 2] )
{
( *mapIt ).second.m_BoundingBox[i] = index[i / 2];
}
// Update max
if ( ( *mapIt ).second.m_BoundingBox[i + 1] < index[i / 2] )
{
( *mapIt ).second.m_BoundingBox[i + 1] = index[i / 2];
}
}
// VOLUME
( *mapIt ).second.m_ZeroOrderMoment++;
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
// FIRST ORDER RAW MOMENTS
( *mapIt ).second.m_FirstOrderRawMoments[i] += index[i];
}
// SECOND ORDER RAW MOMENTS
// Even for ND, the second order moments can be found from just
// two nested loops since second order moments consider only
// interactions between pairs of indices.
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
// It is only necessary to fill in half of the matrix since it is
// symmetric.
for ( unsigned int j = 0; j < ImageDimension; j++ )
{
( *mapIt ).second.m_SecondOrderRawMoments(i, j) += index[i] * index[j];
}
}
if ( m_CalculatePixelIndices == true )
{
// Pixel location list
( *mapIt ).second.m_PixelIndices.push_back(index);
}
++labelIt;
}
const TIntensityImage *intensityImage = this->GetIntensityInput();
// If an intensity image is defined, we can also calculate further
// features.
if ( intensityImage )
{
RealType value;
// Iterator over the intensity image.
typedef ImageRegionConstIteratorWithIndex< TIntensityImage > IntensityImageIteratorType;
IntensityImageIteratorType it( intensityImage, intensityImage->GetBufferedRegion() );
typename IntensityImageIteratorType::IndexType index;
labelIt.GoToBegin();
while ( !it.IsAtEnd() )
{
label = labelIt.Get();
mapIt = m_LabelGeometryMapper.find(label);
value = static_cast< RealType >( it.Get() );
index = it.GetIndex();
// INTEGRATED PIXEL VALUE
( *mapIt ).second.m_Sum += value;
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
// FIRST ORDER WEIGHTED RAW MOMENTS
( *mapIt ).second.m_FirstOrderWeightedRawMoments[i] += index[i]
* ( typename LabelIndexType::IndexValueType )value;
}
++it;
++labelIt;
}
}
// If there is no intensity input defined, the oriented
// intensity regions cannot be calculated.
if ( !intensityImage )
{
if ( m_CalculateOrientedIntensityRegions )
{
std::cerr
<< "ERROR: An input intensity image must be used in order to calculate the oriented intensity image."
<< std::endl;
}
m_CalculateOrientedIntensityRegions = false;
}
// We need to add to the second order moment the second order
// moment of a pixel. This can be derived analytically. The first
// order moment of a pixel can be shown to be 0, and the first order
// cross moment can also be shown to be 0. The second order moment
// can be shown to be 1/12.
float pixelSecondOrderCentralMoment = 1.0f / 12.0f;
// Now that the m_LabelGeometryMapper has been updated for all
// pixels in the image, we can calculate other geometrical values.
// Loop through all labels of the image.
for ( mapIt = m_LabelGeometryMapper.begin(); mapIt != m_LabelGeometryMapper.end(); mapIt++ )
{
// Update the bounding box measurements.
( *mapIt ).second.m_BoundingBoxVolume = 1;
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
( *mapIt ).second.m_BoundingBoxSize[i] =
( *mapIt ).second.m_BoundingBox[2 * i + 1] - ( *mapIt ).second.m_BoundingBox[2 * i] + 1;
( *mapIt ).second.m_BoundingBoxVolume = ( *mapIt ).second.m_BoundingBoxVolume
* ( *mapIt ).second.m_BoundingBoxSize[i];
}
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
// Normalize the centroid sum by the count to get the centroid.
( *mapIt ).second.m_Centroid[i] =
static_cast< typename LabelPointType::ValueType >( ( *mapIt ).second.m_FirstOrderRawMoments[i] )
/ ( *mapIt ).second.m_ZeroOrderMoment;
// This is the weighted sum. It only calculates correctly if
// the intensity image is defined.
if ( !intensityImage )
{
( *mapIt ).second.m_WeightedCentroid[i] = 0.0;
}
else
{
( *mapIt ).second.m_WeightedCentroid[i] =
static_cast< typename LabelPointType::ValueType >( ( *mapIt ).second.m_FirstOrderWeightedRawMoments[i] )
/ ( *mapIt ).second.m_Sum;
}
}
// Using the raw moments, we can calculate the central moments.
MatrixType normalizedSecondOrderCentralMoments(ImageDimension, ImageDimension, 0);
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
for ( unsigned int j = 0; j < ImageDimension; j++ )
{
normalizedSecondOrderCentralMoments(i,
j) =
( ( *mapIt ).second.m_SecondOrderRawMoments(i,
j) ) / ( ( *mapIt ).second.m_ZeroOrderMoment )
- ( *mapIt ).second.m_Centroid[i]
* ( *mapIt ).second.m_Centroid[j];
// We need to add to the second order moment the second order
// moment of a pixel. This can be derived analytically.
if ( i == j )
{
normalizedSecondOrderCentralMoments(i, j) += pixelSecondOrderCentralMoment;
}
}
}
// Compute the eigenvalues/eigenvectors of the covariance matrix.
// The result is stored in increasing eigenvalues with
// corresponding eigenvectors.
vnl_symmetric_eigensystem< double > eig(normalizedSecondOrderCentralMoments);
// Calculate the eigenvalues/eigenvectors
VectorType eigenvalues(ImageDimension, 0);
MatrixType eigenvectors(ImageDimension, ImageDimension, 0);
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
eigenvectors.set_column( i, eig.get_eigenvector(i) );
eigenvalues[i] = eig.get_eigenvalue(i);
}
( *mapIt ).second.m_Eigenvalues = eigenvalues;
( *mapIt ).second.m_Eigenvectors = eigenvectors;
itk::FixedArray< float, ImageDimension > axesLength;
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
axesLength[i] = 4 * std::sqrt(eigenvalues[i]);
}
( *mapIt ).second.m_AxesLength = axesLength;
// The following three features are currently only meaningful in 2D.
( *mapIt ).second.m_Eccentricity = std::sqrt( ( eigenvalues[ImageDimension-1] - eigenvalues[0] ) / eigenvalues[ImageDimension-1] );
( *mapIt ).second.m_Elongation = axesLength[ImageDimension-1] / axesLength[0];
RealType orientation = std::atan2(eig.get_eigenvector(ImageDimension-1)[1], eig.get_eigenvector(ImageDimension-1)[0]);
// Change the orientation from being between -pi to pi to being from 0 to pi.
// We can add pi because the orientation of the major axis is symmetric about the origin.
( *mapIt ).second.m_Orientation = orientation < 0.0 ? orientation + itk::Math::pi : orientation;
if ( m_CalculateOrientedBoundingBox == true )
{
// Calculate the oriented bounding box using the eigenvectors.
CalculateOrientedBoundingBoxVertices(eig, ( *mapIt ).second);
}
if ( m_CalculateOrientedLabelRegions == true )
{
CalculateOrientedImage< TLabelImage, TIntensityImage, LabelImageType >(
this, eig, ( *mapIt ).second, true);
}
if ( m_CalculateOrientedIntensityRegions == true )
{
// If there is no intensity input defined, the oriented
// intensity regions cannot be calculated.
if ( this->GetIntensityInput() )
{
CalculateOrientedImage< TLabelImage, TIntensityImage, IntensityImageType >(
this, eig, ( *mapIt ).second, false);
}
}
m_AllLabels.push_back( ( *mapIt ).first );
}
}
template< typename TLabelImage, typename TIntensityImage >
bool
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::CalculateOrientedBoundingBoxVertices(vnl_symmetric_eigensystem< double > eig, LabelGeometry & labelGeometry)
{
// Calculate the oriented bounding box using the eigenvectors.
// For each label, the pixels are rotated to the new coordinate
// system defined by the eigenvectors. The bounding boxes are
// calculated in this space, and then they are rotated back to the
// original coordinate system to define the oriented bounding boxes.
// The reverse rotation is the transpose of the rotation matrix.
// m_PixelIndices needs to have already been calculated. This is
// handled by the flags.
MatrixType rotationMatrix = CalculateRotationMatrix< TLabelImage, TIntensityImage >(eig);
MatrixType inverseRotationMatrix = rotationMatrix.transpose();
labelGeometry.m_RotationMatrix = rotationMatrix;
// Convert the pixel locations to a vnl_matrix.
// Subtract the centroid of the region so that the rotation will
// be about the center of the region.
MatrixType pixelLocations(ImageDimension, labelGeometry.m_PixelIndices.size(), 0);
for ( unsigned int i = 0; i < labelGeometry.m_PixelIndices.size(); i++ )
{
for ( unsigned int j = 0; j < ImageDimension; j++ )
{
pixelLocations(j, i) = labelGeometry.m_PixelIndices[i][j] - labelGeometry.m_Centroid[j];
}
}
// Rotate the points by the rotation matrix from the eigenvectors.
MatrixType transformedPixelLocations = rotationMatrix * pixelLocations;
// Find the min and max of the point locations in this new
// coordinate system. These values will be float, so we use a
// BoundingBoxFloatType rather than BoundingBoxType.
// The bounding box order is [minX,maxX,minY,maxY,...]
BoundingBoxFloatType transformedBoundingBox;
// Initialize the bounding box values.
for ( unsigned int i = 0; i < ImageDimension * 2; i += 2 )
{
transformedBoundingBox[i] = NumericTraits< float >::max();
transformedBoundingBox[i + 1] = NumericTraits< float >::NonpositiveMin();
}
for ( unsigned int column = 0; column < transformedPixelLocations.columns(); column++ )
{
for ( unsigned int i = 0; i < ( 2 * ImageDimension ); i += 2 )
{
// Update min
if ( transformedBoundingBox[i] > transformedPixelLocations(i / 2, column) )
{
transformedBoundingBox[i] = transformedPixelLocations(i / 2, column);
}
// Update max
if ( transformedBoundingBox[i + 1] < transformedPixelLocations(i / 2, column) )
{
transformedBoundingBox[i + 1] = transformedPixelLocations(i / 2, column);
}
}
}
// Add 0.5 pixel buffers on each side of the bounding box to be sure to
// encompass the pixels and not cut through them.
for ( unsigned int i = 0; i < ( 2 * ImageDimension ); i += 2 )
{
// If the index corresponds with a min, subtract 0.5.
transformedBoundingBox[i] -= 0.5;
// Otherwise, add 0.5.
transformedBoundingBox[i + 1] += 0.5;
}
// The bounding box volume can be calculated directly from the
// transformed bounding box.
// Since 0.5 was already added to the border of the bounding box,
// it is not necessary to add 1 to the range to get the correct range.
labelGeometry.m_OrientedBoundingBoxVolume = 1;
for ( unsigned int i = 0; i < ( 2 * ImageDimension ); i += 2 )
{
labelGeometry.m_OrientedBoundingBoxSize[i / 2] = transformedBoundingBox[i + 1] - transformedBoundingBox[i];
labelGeometry.m_OrientedBoundingBoxVolume *= transformedBoundingBox[i + 1] - transformedBoundingBox[i];
}
// The bounding box cannot be transformed directly because an
// oriented bounding box cannot be specified simply by the min and
// max in each dimension. Instead, the oriented bounding box is
// specified by the points corresponding to the vertices of the
// oriented bounding box. We find these from the oriented
// bounding box and transform them back to the original coordinate frame.
// The order of the vertices corresponds with binary counting,
// where min is zero and max is one. For example, in 2D, binary
// counting will give [0,0],[0,1],[1,0],[1,1], which corresponds
// to [minX,minY],[minX,maxY],[maxX,minY],[maxX,maxY].
// Loop through each dimension of the bounding box and find all of the
// vertices.
unsigned int numberOfVertices = 1 << ImageDimension;
MatrixType transformedBoundingBoxVertices(ImageDimension, numberOfVertices, 0);
int val;
LabelIndexType binaryIndex;
int arrayIndex;
for ( unsigned int i = 0; i < numberOfVertices; i++ )
{
val = i;
for ( unsigned int j = 0; j < ImageDimension; j++ )
{
// This is the binary index as described above.
binaryIndex[j] = val % 2;
val = val / 2;
// This is the index into the transformedBoundingBox array
// corresponding to the binaryIndex.
arrayIndex = binaryIndex[j] + 2 * j;
transformedBoundingBoxVertices(j, i) = transformedBoundingBox[arrayIndex];
}
}
// Transform the transformed bounding box vertices back to the
// original coordinate system.
MatrixType orientedBoundingBoxVertices = inverseRotationMatrix * transformedBoundingBoxVertices;
// Add the centroid back to each of the vertices since it was
// subtracted when the points were rotated.
for ( unsigned int i = 0; i < orientedBoundingBoxVertices.columns(); i++ )
{
for ( unsigned int j = 0; j < ImageDimension; j++ )
{
orientedBoundingBoxVertices(j, i) += labelGeometry.m_Centroid[j];
// Copy the oriented bounding box vertices back to a vector of
// points for the mapper.
labelGeometry.m_OrientedBoundingBoxVertices[i][j] = orientedBoundingBoxVertices(j, i);
}
}
// Find the origin of the oriented bounding box.
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
labelGeometry.m_OrientedBoundingBoxOrigin[i] = transformedBoundingBox[2 * i] + labelGeometry.m_Centroid[i];
}
return true;
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::LabelIndicesType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetPixelIndices(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
LabelIndicesType emptyVector;
emptyVector.clear();
return emptyVector;
}
else
{
return ( *mapIt ).second.m_PixelIndices;
}
}
template< typename TLabelImage, typename TIntensityImage >
SizeValueType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetVolume(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
return 0;
}
else
{
return ( *mapIt ).second.m_ZeroOrderMoment;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::RealType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetIntegratedIntensity(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
return NumericTraits< RealType >::ZeroValue();
}
else
{
return ( *mapIt ).second.m_Sum;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::LabelPointType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetCentroid(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
LabelPointType emptyCentroid;
emptyCentroid.Fill(NumericTraits< typename LabelPointType::ValueType >::ZeroValue());
return emptyCentroid;
}
else
{
return ( *mapIt ).second.m_Centroid;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::LabelPointType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetWeightedCentroid(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
LabelPointType emptyCentroid;
emptyCentroid.Fill(NumericTraits< typename LabelPointType::ValueType >::ZeroValue());
return emptyCentroid;
}
else
{
return ( *mapIt ).second.m_WeightedCentroid;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::VectorType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetEigenvalues(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
VectorType emptyVector(ImageDimension, 0);
return emptyVector;
}
else
{
return ( *mapIt ).second.m_Eigenvalues;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::MatrixType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetEigenvectors(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
MatrixType emptyMatrix(ImageDimension, ImageDimension, 0);
return emptyMatrix;
}
else
{
return ( *mapIt ).second.m_Eigenvectors;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::AxesLengthType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetAxesLength(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
LabelPointType emptyAxesLength;
emptyAxesLength.Fill(NumericTraits< typename AxesLengthType::ValueType >::ZeroValue());
return emptyAxesLength;
}
else
{
return ( *mapIt ).second.m_AxesLength;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::RealType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetMinorAxisLength(LabelPixelType label) const
{
AxesLengthType axisLength = GetAxesLength(label);
return axisLength[0];
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::RealType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetMajorAxisLength(LabelPixelType label) const
{
AxesLengthType axisLength = GetAxesLength(label);
return axisLength[ImageDimension - 1];
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::RealType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetEccentricity(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
return NumericTraits< RealType >::ZeroValue();
}
else
{
return ( *mapIt ).second.m_Eccentricity;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::RealType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetElongation(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
return NumericTraits< RealType >::ZeroValue();
}
else
{
return ( *mapIt ).second.m_Elongation;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::RealType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetOrientation(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
return NumericTraits< RealType >::ZeroValue();
}
else
{
return ( *mapIt ).second.m_Orientation;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::BoundingBoxType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetBoundingBox(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
BoundingBoxType emptyBox;
emptyBox.Fill(NumericTraits< typename BoundingBoxType::ValueType >::ZeroValue());
// label does not exist, return a default value
return emptyBox;
}
else
{
return ( *mapIt ).second.m_BoundingBox;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::RealType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetBoundingBoxVolume(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
return NumericTraits< RealType >::ZeroValue();
}
else
{
return ( *mapIt ).second.m_BoundingBoxVolume;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::LabelSizeType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetBoundingBoxSize(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
LabelSizeType emptySize;
emptySize.Fill(NumericTraits< typename LabelSizeType::SizeValueType >::ZeroValue());
return emptySize;
}
else
{
return ( *mapIt ).second.m_BoundingBoxSize;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::BoundingBoxVerticesType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetOrientedBoundingBoxVertices(LabelPixelType label) const
{
unsigned int numberOfVertices = 1 << ImageDimension;
MapConstIterator mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
LabelPointType emptyPoint;
emptyPoint.Fill(0);
BoundingBoxVerticesType emptyVertices;
emptyVertices.resize(numberOfVertices, emptyPoint);
return emptyVertices;
}
else
{
return ( *mapIt ).second.m_OrientedBoundingBoxVertices;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::RealType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetOrientedBoundingBoxVolume(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
return NumericTraits< RealType >::ZeroValue();
}
else
{
return ( *mapIt ).second.m_OrientedBoundingBoxVolume;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::LabelPointType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetOrientedBoundingBoxSize(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
// LabelSizeType emptySize;
// emptySize.Fill( NumericTraits<LabelSizeType::SizeValueType>::ZeroValue());
// return emptySize;
LabelPointType emptySize;
emptySize.Fill(NumericTraits< typename LabelPointType::ValueType >::ZeroValue());
return emptySize;
}
else
{
return ( *mapIt ).second.m_OrientedBoundingBoxSize;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::LabelPointType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetOrientedBoundingBoxOrigin(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
LabelPointType emptySize;
emptySize.Fill(NumericTraits< typename LabelPointType::ValueType >::ZeroValue());
return emptySize;
}
else
{
return ( *mapIt ).second.m_OrientedBoundingBoxOrigin;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::MatrixType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetRotationMatrix(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
MatrixType emptyMatrix(ImageDimension, ImageDimension, 0);
return emptyMatrix;
}
else
{
return ( *mapIt ).second.m_RotationMatrix;
}
}
template< typename TLabelImage, typename TIntensityImage >
typename LabelGeometryImageFilter< TLabelImage, TIntensityImage >::RegionType
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetRegion(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
RegionType emptyRegion;
// label does not exist, return a default value
return emptyRegion;
}
else
{
BoundingBoxType bbox = this->GetBoundingBox(label);
IndexType index;
SizeType size;
unsigned int dimension = bbox.Size() / 2;
for ( unsigned int i = 0; i < dimension; i++ )
{
index[i] = bbox[2 * i];
size[i] = bbox[2 * i + 1] - bbox[2 * i] + 1;
}
RegionType region;
region.SetSize(size);
region.SetIndex(index);
return region;
}
}
template< typename TLabelImage, typename TIntensityImage >
TLabelImage *
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetOrientedLabelImage(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
return ITK_NULLPTR;
}
else
{
return ( *mapIt ).second.m_OrientedLabelImage;
}
}
template< typename TLabelImage, typename TIntensityImage >
TIntensityImage *
LabelGeometryImageFilter< TLabelImage, TIntensityImage >
::GetOrientedIntensityImage(LabelPixelType label) const
{
MapConstIterator mapIt;
mapIt = m_LabelGeometryMapper.find(label);
if ( mapIt == m_LabelGeometryMapper.end() )
{
// label does not exist, return a default value
return ITK_NULLPTR;
}
else
{
return ( *mapIt ).second.m_OrientedIntensityImage;
}
}
template< typename TImage, typename TLabelImage >
void
LabelGeometryImageFilter< TImage, TLabelImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Number of labels: " << m_LabelGeometryMapper.size()
<< std::endl;
MapConstIterator mapIt;
for ( mapIt = m_LabelGeometryMapper.begin(); mapIt != m_LabelGeometryMapper.end(); mapIt++ )
{
typedef typename NumericTraits< LabelPixelType >::PrintType LabelPrintType;
os << indent << "Label[" << (LabelPrintType)( ( *mapIt ).second.m_Label ) << "]: ";
os << "\t Volume: " << ( *mapIt ).second.m_ZeroOrderMoment;
os << "\t Integrated Intensity: " << ( *mapIt ).second.m_Sum;
os << "\t Centroid: " << ( *mapIt ).second.m_Centroid;
os << "\t Weighted Centroid: " << ( *mapIt ).second.m_WeightedCentroid;
os << "\t Axes Length: " << ( *mapIt ).second.m_AxesLength;
os << "\t Eccentricity: " << ( *mapIt ).second.m_Eccentricity;
os << "\t Elongation: " << ( *mapIt ).second.m_Elongation;
os << "\t Orientation: " << ( *mapIt ).second.m_Orientation;
os << "\t Bounding box: " << ( *mapIt ).second.m_BoundingBox;
os << "\t Bounding box volume: " << ( *mapIt ).second.m_BoundingBoxVolume;
os << "\t Bounding box size: " << ( *mapIt ).second.m_BoundingBoxSize;
// Oriented bounding box verticies
os << "\t Oriented bounding box volume: " << ( *mapIt ).second.m_OrientedBoundingBoxVolume;
os << "\t Oriented bounding box size: " << ( *mapIt ).second.m_OrientedBoundingBoxSize;
// Rotation matrix
os << std::endl;
os << "\t Calculate oriented intensity regions: " << m_CalculateOrientedIntensityRegions;
os << "\t Calculate pixel indices: " << m_CalculatePixelIndices;
os << "\t Calculate oriented bounding box: " << m_CalculateOrientedBoundingBox;
os << "\t Calculate oriented label regions: " << m_CalculateOrientedLabelRegions;
os << "\n\n";
}
}
} // end namespace itk
#endif
|