1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMultiphaseSparseFiniteDifferenceImageFilter_hxx
#define itkMultiphaseSparseFiniteDifferenceImageFilter_hxx
#include "itkMultiphaseSparseFiniteDifferenceImageFilter.h"
namespace itk
{
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
double MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::m_ConstantGradientValue = 1.0;
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
const typename MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage, TFunction, TIdCell >::ValueType
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::m_ValueOne = NumericTraits< typename
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage,
TFunction, TIdCell >
::ValueType >::OneValue();
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
const typename MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage, TFunction, TIdCell >::ValueType
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::m_ValueZero = NumericTraits< typename
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage,
TFunction, TIdCell >::
ValueType >::ZeroValue();
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
const typename MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage, TFunction, TIdCell >::StatusType
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::m_StatusNull = NumericTraits< typename
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage,
TFunction, TIdCell >::
StatusType >::NonpositiveMin();
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
const typename MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage, TFunction, TIdCell >::StatusType
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::m_StatusChanging = -1;
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
const typename MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage, TFunction, TIdCell >::StatusType
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::m_StatusActiveChangingUp = -2;
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
const typename MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage, TFunction, TIdCell >::StatusType
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::m_StatusActiveChangingDown = -3;
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
const typename MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage, TFunction, TIdCell >::StatusType
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::m_StatusBoundaryPixel = -4;
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::MultiphaseSparseFiniteDifferenceImageFilter()
{
this->m_CurrentFunctionIndex = 0;
this->m_IsoSurfaceValue = m_ValueZero;
this->m_BackgroundValue = NumericTraits< ValueType >::max();
this->m_NumberOfLayers = ImageDimension;
this->m_InterpolateSurfaceLocation = true;
this->m_BoundsCheckingActive = false;
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::CopyInputToOutput()
{
for ( IdCellType i = 0; i < this->m_FunctionCount; i++ )
{
InputImagePointer input = this->m_LevelSet[i];
// This is used as a temporary buffer
InputImagePointer tempImage = InputImageType::New();
tempImage->SetRegions( input->GetRequestedRegion() );
tempImage->CopyInformation(input);
tempImage->Allocate();
// Compute Heaviside of input image
// Copy input to temp
InputRegionType region = input->GetRequestedRegion();
ImageRegionIterator< InputImageType > lIt(input, region);
ImageRegionIterator< InputImageType > tIt(tempImage, region);
lIt.GoToBegin();
tIt.GoToBegin();
while ( !lIt.IsAtEnd() )
{
tIt.Set( lIt.Get() );
++tIt;
++lIt;
}
// TODO: Can the zeroCrossingFilter have the same input and output?
ZeroCrossingFilterPointer zeroCrossingFilter = ZeroCrossingFilterType::New();
zeroCrossingFilter->SetInput(tempImage);
zeroCrossingFilter->SetBackgroundValue(m_ValueOne);
zeroCrossingFilter->SetForegroundValue(m_ValueZero);
zeroCrossingFilter->Update();
// The levelset image has a 0 where the zero contour exists and + outside
// and - inside
ImageRegionIterator< InputImageType > zIt(zeroCrossingFilter->GetOutput(), region);
lIt.GoToBegin();
zIt.GoToBegin();
while ( !lIt.IsAtEnd() )
{
if ( zIt.Get() == 0 )
{
lIt.Set(0);
}
++zIt;
++lIt;
}
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
typename MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage, TFunction, TIdCell >::TimeStepType
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::CalculateChange()
{
// Initialize to the maximum possible value
TimeStepType minTimeStep = NumericTraits< TimeStepType >::max();
TimeStepType timeStep;
InputSpacingType spacing = this->m_LevelSet[0]->GetSpacing();
// Calculate change across all the level-set functions
for ( IdCellType fId = 0; fId < this->m_FunctionCount; ++fId )
{
this->m_CurrentFunctionIndex = fId;
const FiniteDifferenceFunctionPointer df = this->m_DifferenceFunctions[fId];
SparseDataStruct *sparsePtr = this->m_SparseData[fId];
FiniteDifferenceFunctionFloatOffsetType offset;
ValueType gradientMagnitudeSqr,
forward, backward, current;
const ValueType MIN_NORM = 1.0e-6;
void *globalData = df->GetGlobalDataPointer();
NeighborhoodIterator< InputImageType > outputIt ( df->GetRadius(),
this->m_LevelSet[fId], this->m_LevelSet[fId]->GetRequestedRegion() );
if ( m_BoundsCheckingActive == false )
{
outputIt.NeedToUseBoundaryConditionOff();
}
sparsePtr->m_UpdateBuffer.clear();
sparsePtr->m_UpdateBuffer.reserve ( sparsePtr->m_Layers[0]->Size() );
// Calculates the update values for the active layer indices in this
// iteration. Iterates through the active layer index list by evaluating
// the update to the output image (level set image) at each
// index. Update values are stored in the update buffer.
LayerConstIterator layerIt = sparsePtr->m_Layers[0]->Begin();
unsigned int j;
while ( layerIt != sparsePtr->m_Layers[0]->End() )
{
outputIt.SetLocation (layerIt->m_Value);
current = outputIt.GetCenterPixel();
// Calculate the offset to the surface from the current of this
// neighborhood. This is used by some level set functions in sampling a
// speed, advection, or curvature term.
if ( this->GetInterpolateSurfaceLocation() && current != 0.0 )
{
// Surface is at the zero crossing, so distance to surface is:
// phi(x) / norm(grad(phi)), where phi(x) is the current of the
// neighborhood. The location is therefore
// (i,j,k) - ( phi(x)/ norm(grad(phi))) * (grad(phi(x)) /
// norm(grad(phi)) )
gradientMagnitudeSqr = 0.0;
for ( j = 0; j < ImageDimension; ++j )
{
forward = outputIt.GetNext (j);
backward = outputIt.GetPrevious (j);
if ( forward * backward >= 0 )
{
// Neighbors are same sign OR at least one neighbor is zero.
// Pick the larger magnitude derivative.
if ( itk::Math::abs (forward - current) > itk::Math::abs(current - backward) )
{
offset[j] = ( forward - current ) / spacing[j];
}
else
{
offset[j] = ( current - backward ) / spacing[j];
}
}
else //Neighbors are opposite sign, pick the direction of 0 surface.
{
if ( forward * current < 0 )
{
offset[j] = ( forward - current ) / spacing[j];
}
else
{
offset[j] = ( current - backward ) / spacing[j];
}
}
gradientMagnitudeSqr += offset[j] * offset[j];
}
// Adding sqrt imagedimension "extends the reach" of the
// interpolation
// to surfaces that pass close to the current of cells. This is a
// heuristic fudge factor that improves interpolation and reduces
// "wiggling" at convergence.
ValueType coeff = current * std::sqrt(ImageDimension
+ 0.5) / ( gradientMagnitudeSqr + MIN_NORM );
for ( j = 0; j < ImageDimension; ++j )
{
offset[j] *= coeff;
}
sparsePtr->m_UpdateBuffer.push_back ( df->ComputeUpdate (outputIt, globalData, offset) );
}
else // Don't do interpolation
{
sparsePtr->m_UpdateBuffer.push_back ( df->ComputeUpdate (outputIt, globalData) );
}
++layerIt;
}
// Ask the finite difference function to compute the time step for
// this iteration. We give it the global data pointer to use, then
// ask it to free the global data memory.
timeStep = df->ComputeGlobalTimeStep (globalData);
df->ReleaseGlobalDataPointer (globalData);
if ( timeStep < minTimeStep )
{
minTimeStep = timeStep;
}
}
minTimeStep = 0.2; //FIXME finally assigned to a constant
return minTimeStep;
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage,
TFunction, TIdCell >
::ApplyUpdate(TimeStepType dt)
{
unsigned int j, k;
for ( IdCellType fId = 0; fId < this->m_FunctionCount; ++fId )
{
this->m_CurrentFunctionIndex = fId;
SparseDataStruct *sparsePtr = this->m_SparseData[fId];
unsigned int t;
StatusType up_to, up_search;
StatusType down_to, down_search;
LayerPointerType UpList[2];
LayerPointerType DownList[2];
for ( j = 0; j < 2; ++j )
{
UpList[j] = LayerType::New();
DownList[j] = LayerType::New();
}
// Process the active layer. This step will update the values in the
// active layer as well as the values at indices that *will* become part
// of the active layer when they are promoted/demoted. Also records
// promotions, demotions in the UpList[0] and DownList[0] for current
// active layer indices (i.e. those indices which will move inside or
// outside
// the active layers).
this->UpdateActiveLayerValues(dt, UpList[0], DownList[0]);
// Process the up/down lists. This is an iterative process which
// proceeds outwards from the active layer. Each iteration generates the
// list for the next iteration.
// First process the status lists generated on the active layer.
this->ProcessStatusList (UpList[0], UpList[1], 2, 1);
this->ProcessStatusList (DownList[0], DownList[1], 1, 2);
down_to = up_to = 0;
up_search = 3;
down_search = 4;
j = 1;
k = 0;
while ( down_search < static_cast< StatusType >( sparsePtr->m_Layers.size() ) )
{
this->ProcessStatusList(UpList[j], UpList[k], up_to, up_search);
this->ProcessStatusList(DownList[j], DownList[k], down_to, down_search);
if ( up_to == 0 )
{
up_to += 1;
}
else
{
up_to += 2;
}
down_to += 2;
up_search += 2;
down_search += 2;
// Swap the lists so we can re-use the empty one.
t = j;
j = k;
k = t;
}
// Process the outermost inside/outside layers in the sparse field.
this->ProcessStatusList(UpList[j], UpList[k], up_to, m_StatusNull);
this->ProcessStatusList(DownList[j], DownList[k], down_to, m_StatusNull);
// Now we are left with the lists of indices which must be
// brought into the outermost layers. Bring UpList into last inside layer
// and DownList into last outside layer.
this->ProcessOutsideList (UpList[k], static_cast< signed char >(
sparsePtr->m_Layers.size() ) - 2);
this->ProcessOutsideList (DownList[k], static_cast< signed char >(
sparsePtr->m_Layers.size() ) - 1);
// Finally, we update all of the layer values (excluding the active layer,
// which has already been updated).
this->PropagateAllLayerValues();
}
this->m_CurrentFunctionIndex = 0;
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage,
typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage,
TFunction, TIdCell >
::ProcessOutsideList(LayerType *OutsideList, StatusType ChangeToStatus)
{
SparseDataStruct *sparsePtr = this->m_SparseData[this->m_CurrentFunctionIndex];
LayerNodeType * node;
// Push each index in the input list into its appropriate status layer
// (ChangeToStatus) and update the status image value at that index.
while ( !OutsideList->Empty() )
{
sparsePtr->m_StatusImage->SetPixel (OutsideList->Front()->m_Value, ChangeToStatus);
node = OutsideList->Front();
OutsideList->PopFront();
sparsePtr->m_Layers[ChangeToStatus]->PushFront (node);
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage,
TFunction, TIdCell >
::ProcessStatusList(LayerType *InputList, LayerType *OutputList,
StatusType ChangeToStatus, StatusType SearchForStatus)
{
SparseDataStruct *sparsePtr = this->m_SparseData[this->m_CurrentFunctionIndex];
unsigned int i;
bool bounds_status;
LayerNodeType *node;
StatusType neighbor_status;
NeighborhoodIterator< StatusImageType > statusIt (
m_NeighborList.GetRadius(), sparsePtr->m_StatusImage,
this->m_LevelSet[this->m_CurrentFunctionIndex]->GetRequestedRegion() );
if ( !m_BoundsCheckingActive )
{
statusIt.NeedToUseBoundaryConditionOff();
}
// Push each index in the input list into its appropriate status layer
// (ChangeToStatus) and update the status image value at that index.
// Also examine the neighbors of the index to determine which need to go
// onto the output list (search for SearchForStatus).
while ( !InputList->Empty() )
{
statusIt.SetLocation (InputList->Front()->m_Value);
statusIt.SetCenterPixel (ChangeToStatus);
node = InputList->Front(); // Must unlink from the input list
InputList->PopFront(); // before transferring to another list.
sparsePtr->m_Layers[ChangeToStatus]->PushFront (node);
// Iterate through the neighbors of this status-changed node
for ( i = 0; i < m_NeighborList.GetSize(); ++i )
{
neighbor_status = statusIt.GetPixel (
m_NeighborList.GetArrayIndex (i) );
// Have we bumped up against the boundary? If so, turn on bounds
// checking.
if ( neighbor_status == m_StatusBoundaryPixel )
{
m_BoundsCheckingActive = true;
}
// Find neighbors that move into the list prior to the ChangeToStatus
if ( neighbor_status == SearchForStatus )
{
// mark this pixel so we don't add it twice.
statusIt.SetPixel (m_NeighborList.GetArrayIndex (i),
m_StatusChanging, bounds_status);
if ( bounds_status == true )
{
node = sparsePtr->m_LayerNodeStore->Borrow();
node->m_Value = statusIt.GetIndex()
+ m_NeighborList.GetNeighborhoodOffset (i);
OutputList->PushFront (node);
} // else this index was out of bounds.
}
}
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage,
TFunction, TIdCell >
::UpdateActiveLayerValues(TimeStepType dt, LayerType *UpList, LayerType
*DownList)
{
SparseDataStruct *sparsePtr = this->m_SparseData[this->m_CurrentFunctionIndex];
// This method scales the update buffer values by the time step and adds
// them to the active layer pixels. New values at an index which fall
// outside of the active layer range trigger that index to be placed on the
// "up" or "down" status list. The neighbors of any such index are then
// assigned new values if they are determined to be part of the active list
// for the next iteration (i.e. their values will be raised or lowered into
// the active range).
// These need to take into account the spacing ??
const ValueType LOWER_ACTIVE_THRESHOLD = -( m_ConstantGradientValue / 2.0 );
const ValueType UPPER_ACTIVE_THRESHOLD = m_ConstantGradientValue / 2.0;
ValueType new_value, temp_value;
LayerNodeType *node, *release_node;
StatusType neighbor_status;
unsigned int i, idx;
bool bounds_status, flag;
LayerIterator layerIt;
UpdateBufferConstIterator updateIt;
NeighborhoodIterator< InputImageType >
outputIt ( m_NeighborList.GetRadius(),
this->m_LevelSet[this->m_CurrentFunctionIndex],
this->m_LevelSet[this->m_CurrentFunctionIndex]->GetRequestedRegion() );
NeighborhoodIterator< StatusImageType >
statusIt ( m_NeighborList.GetRadius(),
sparsePtr->m_StatusImage,
this->m_LevelSet[this->m_CurrentFunctionIndex]->GetRequestedRegion() );
// If bounds checking is turned on
if ( !m_BoundsCheckingActive )
{
outputIt.NeedToUseBoundaryConditionOff();
statusIt.NeedToUseBoundaryConditionOff();
}
// Iterate over the update buffer and active layer
// Both are the same size
layerIt = sparsePtr->m_Layers[0]->Begin();
updateIt = sparsePtr->m_UpdateBuffer.begin();
while ( layerIt != sparsePtr->m_Layers[0]->End() )
{
outputIt.SetLocation (layerIt->m_Value);
statusIt.SetLocation (layerIt->m_Value);
new_value = this->CalculateUpdateValue (layerIt->m_Value,
dt, outputIt.GetCenterPixel(), *updateIt);
// If this index needs to be moved to another layer, then search its
// neighborhood for indices that need to be pulled up/down into the
// active layer. Set those new active layer values appropriately,
// checking first to make sure they have not been set by a more
// influential neighbor.
// ...But first make sure any neighbors in the active layer are not
// moving to a layer in the opposite direction. This step is necessary
// to avoid the creation of holes in the active layer. The fix is simply
// to not change this value and leave the index in the active set.
if ( new_value >= UPPER_ACTIVE_THRESHOLD )
{
// This index will move UP into a positive (outside) layer. Contour is
// shrinking
// into the negative layers.
// First check for neighbors that belong to the active layer and moving
// in the opposite direction.
flag = false;
for ( i = 0; i < m_NeighborList.GetSize(); ++i )
{
if ( statusIt.GetPixel( m_NeighborList.GetArrayIndex(i) )
== m_StatusActiveChangingDown )
{
flag = true;
break;
}
}
if ( flag == true )
{
++layerIt;
++updateIt;
continue;
}
// Search the neighborhood for inside indices.
for ( i = 0; i < m_NeighborList.GetSize(); ++i )
{
temp_value = new_value - m_ConstantGradientValue * m_PixelDistance[i];
idx = m_NeighborList.GetArrayIndex (i);
neighbor_status = statusIt.GetPixel (idx);
// 1 is first negative layer that will come into the active layer
if ( neighbor_status == 1 )
{
// Keep the smallest possible value for the new active node. This
// places the new active layer node closest to the zero level-set.
if ( outputIt.GetPixel (idx) < LOWER_ACTIVE_THRESHOLD
|| itk::Math::abs (temp_value) < itk::Math::abs (
outputIt.GetPixel (idx) ) )
{
UpdatePixel (this->m_CurrentFunctionIndex, idx, outputIt, temp_value, bounds_status);
}
}
}
// Push current active layer pixel into the uplist
node = sparsePtr->m_LayerNodeStore->Borrow();
node->m_Value = layerIt->m_Value;
UpList->PushFront (node);
statusIt.SetCenterPixel (m_StatusActiveChangingUp);
// Now remove this pixel from the active list.
release_node = layerIt.GetPointer();
sparsePtr->m_Layers[0]->Unlink (release_node);
sparsePtr->m_LayerNodeStore->Return (release_node);
}
else if ( new_value < LOWER_ACTIVE_THRESHOLD )
{
// This index will move DOWN into a negative (inside) layer. 2 in the
// positive sparse field will come in
// First check for active layer neighbors moving in the opposite
// direction.
flag = false;
for ( i = 0; i < m_NeighborList.GetSize(); ++i )
{
if ( statusIt.GetPixel( m_NeighborList.GetArrayIndex(i) )
== m_StatusActiveChangingUp )
{
flag = true;
break;
}
}
if ( flag == true )
{
++layerIt;
++updateIt;
continue;
}
// Search the neighborhood for outside indices.
for ( i = 0; i < m_NeighborList.GetSize(); ++i )
{
temp_value = new_value + m_ConstantGradientValue * m_PixelDistance[i];
idx = m_NeighborList.GetArrayIndex (i);
neighbor_status = statusIt.GetPixel (idx);
if ( neighbor_status == 2 )
{
// Keep the smallest magnitude value for this active set node. This
// places the node closest to the active layer.
if ( outputIt.GetPixel (idx) >= UPPER_ACTIVE_THRESHOLD
|| itk::Math::abs (temp_value) < itk::Math::abs (
outputIt.GetPixel (idx) ) )
{
UpdatePixel (this->m_CurrentFunctionIndex, idx, outputIt, temp_value, bounds_status);
}
}
}
// Push current active layer pixel into the downlist
node = sparsePtr->m_LayerNodeStore->Borrow();
node->m_Value = layerIt->m_Value;
DownList->PushFront (node);
statusIt.SetCenterPixel (m_StatusActiveChangingDown);
// Now remove this index from the active list.
release_node = layerIt.GetPointer();
sparsePtr->m_Layers[0]->Unlink (release_node);
sparsePtr->m_LayerNodeStore->Return (release_node);
}
else
{
UpdatePixel(this->m_CurrentFunctionIndex, outputIt.Size() / 2, outputIt, new_value, bounds_status);
}
// Move to the next active layer pixel
++layerIt;
++updateIt;
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage,
TFunction, TIdCell >
::InitializeActiveLayerValues()
{
// Initialize all active layer pixels to values computed as distance
// to the 0 contour. Similar to the fast marching initial seeds.
const ValueType MIN_NORM = 1.0e-6;
InputSpacingType spacing = this->m_LevelSet[0]->GetSpacing();
double temp;
for ( IdCellType i = 0; i < this->m_FunctionCount; i++ )
{
SparseDataStruct *sparsePtr = this->m_SparseData[i];
InputImagePointer levelset = this->m_LevelSet[i];
typename LayerType::ConstIterator activeIt;
ConstNeighborhoodIterator< InputImageType > outputIt (
m_NeighborList.GetRadius(),
levelset, levelset->GetRequestedRegion() );
sparsePtr->m_UpdateBuffer.clear();
sparsePtr->m_UpdateBuffer.reserve ( sparsePtr->m_Layers[0]->Size() );
unsigned int center; // index to active layer pixel
center = outputIt.Size() / 2;
ValueType dx, gradientMagnitude, gradientMagnitudeSqr,
distance, forward, current, backward;
// For all indices in the active layer...
activeIt = sparsePtr->m_Layers[0]->Begin();
while ( activeIt != sparsePtr->m_Layers[0]->End() )
{
// Interpolate on the (shifted) input image values at this index to
// assign an active layer value in the output image.
outputIt.SetLocation (activeIt->m_Value);
gradientMagnitudeSqr = m_ValueZero;
for ( unsigned int j = 0; j < ImageDimension; ++j )
{
// Compute forward and backward pixel values
forward = outputIt.GetPixel ( center + m_NeighborList.GetStride(j) );
current = outputIt.GetCenterPixel();
backward = outputIt.GetPixel ( center - m_NeighborList.GetStride (j) );
if ( forward * backward >= 0 )
{
// Neighbors are same sign OR at least one neighbor is zero.
// Pick the larger magnitude derivative.
if ( ::itk::Math::abs (forward - center) > ::itk::Math::abs(center - backward) )
{
dx = ( forward - current ) / spacing[j];
}
else
{
dx = ( current - backward ) / spacing[j];
}
}
else
{
// Choose the derivative closest to the 0 contour
if ( itk::Math::sgn(current * forward) == -1 )
{
dx = ( forward - current ) / spacing[j];
}
else
{
dx = ( current - backward ) / spacing[j];
}
}
gradientMagnitudeSqr += dx * dx;
}
gradientMagnitude = std::sqrt (gradientMagnitudeSqr) + MIN_NORM;
// Compute the correct distance as phi(x)/gradientMagnitude
distance = outputIt.GetCenterPixel() / gradientMagnitude;
// Insert in the update buffer
sparsePtr->m_UpdateBuffer.push_back(
std::min (std::max (-MIN_NORM, distance),
MIN_NORM) );
++activeIt;
}
// Update the level-set image using the update buffer
activeIt = sparsePtr->m_Layers[0]->Begin();
while ( activeIt != sparsePtr->m_Layers[0]->End() )
{
// Update the accumulator value using the update buffer
temp = static_cast< double >( sparsePtr->m_UpdateBuffer.front()
- levelset->GetPixel (activeIt->m_Value) );
m_RMSSum += temp * temp;
m_RMSCounter++;
levelset->SetPixel ( activeIt->m_Value, sparsePtr->m_UpdateBuffer.front() );
++activeIt;
}
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage,
TFunction, TIdCell >
::PropagateAllLayerValues()
{
for ( IdCellType i = 0; i < this->m_FunctionCount; i++ )
{
// Calls the UpdatePixel(...) function inside
PropagateFunctionLayerValues (i);
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage,
TFunction, TIdCell >
::PropagateFunctionLayerValues(unsigned int fId)
{
SparseDataStruct *sparsePtr = this->m_SparseData[fId];
// Update values in the first inside and first outside layers using the
// active layer as a seed. Inside layers are odd numbers, outside layers are
// even numbers.
this->PropagateLayerValues (sparsePtr, 0, 1, 3, 1); // first inside
this->PropagateLayerValues (sparsePtr, 0, 2, 4, 2); // first outside
// Update the rest of the layers.
for ( unsigned int i = 1; i < sparsePtr->m_Layers.size() - 2; ++i )
{
this->PropagateLayerValues (sparsePtr, i, i + 2, i + 4, ( i + 2 ) % 2);
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage,
TOutputImage,
TFunction, TIdCell >
::PropagateLayerValues(SparseDataStruct *sparsePtr, StatusType from,
StatusType to, StatusType promote, int InOrOut)
{
// InOrOut indicates whether we are propagating in the negative/positive
// region
// of the level-set function
unsigned int i;
ValueType value_temp, delta;
ValueType value = NumericTraits< ValueType >::ZeroValue(); // warnings
bool found_neighbor_flag;
LayerIterator toIt;
LayerNodeType *node;
StatusType past_end = static_cast< StatusType >( sparsePtr->m_Layers.size() ) - 1;
// Are we propagating values inward (-1, more negative) or outward (1, more
// positive)?
delta = ( InOrOut == 1 ) ? -1 : 1;
NeighborhoodIterator< InputImageType >
outputIt ( m_NeighborList.GetRadius(),
this->m_LevelSet[sparsePtr->m_Index],
this->m_LevelSet[sparsePtr->m_Index]->GetRequestedRegion() );
NeighborhoodIterator< StatusImageType >
statusIt ( m_NeighborList.GetRadius(), sparsePtr->m_StatusImage,
this->m_LevelSet[sparsePtr->m_Index]->GetRequestedRegion() );
if ( !m_BoundsCheckingActive )
{
outputIt.NeedToUseBoundaryConditionOff();
statusIt.NeedToUseBoundaryConditionOff();
}
// Iterate over the to-layer to fill the values in the output image
toIt = sparsePtr->m_Layers[to]->Begin();
while ( toIt != sparsePtr->m_Layers[to]->End() )
{
// Set the iterator location in the status image
OutputIndexType indexCurrent = toIt->m_Value;
statusIt.SetLocation (indexCurrent);
// Is this index marked for deletion? If the status image has
// been marked with another layer's value, we need to delete this node
// from the current list then skip to the next iteration.
if ( statusIt.GetCenterPixel() != to )
{
node = toIt.GetPointer();
++toIt;
sparsePtr->m_Layers[to]->Unlink (node);
sparsePtr->m_LayerNodeStore->Return (node);
continue;
}
// Set the iterator location in the level-set image
outputIt.SetLocation (toIt->m_Value);
// We explore all neighbors to identify the closest from-layer node
found_neighbor_flag = false;
unsigned int indexNeighbor;
for ( i = 0; i < m_NeighborList.GetSize(); ++i )
{
// If this neighbor is in the "from" list, compare its absolute value
// to any previous values found in the "from" list. Keep the value
// that will cause the to-layer to be closest to the zero level set.
indexNeighbor = m_NeighborList.GetArrayIndex (i); // Get index
if ( statusIt.GetPixel (indexNeighbor) == from ) // if belongs to
// from-layer
{
// This value should be a distance in terms of spacing with neighbors
// plus its current value
InputPointType p1, p2;
ValueType dist = 0; // compute the distance between neighbors
this->m_LevelSet[sparsePtr->m_Index]->TransformIndexToPhysicalPoint(
statusIt.GetIndex(indexNeighbor), p1);
this->m_LevelSet[sparsePtr->m_Index]->TransformIndexToPhysicalPoint(
indexCurrent, p2);
for ( unsigned int j = 0; j < ImageDimension; j++ )
{
dist += ( p1[j] - p2[j] ) * ( p1[j] - p2[j] );
}
dist = delta * std::sqrt(dist);
value_temp = dist + outputIt.GetPixel (indexNeighbor); // grab its
// value
if ( !found_neighbor_flag )
{
value = value_temp;
}
else
{
// Irrespective of negative/positive region, select the lowest
// absolute minimum
//value = delta * std::min( itk::Math::abs( value_temp ),
// itk::Math::abs( value ) );
if ( InOrOut == 1 ) // inward
{
// Find the largest (least negative) neighbor
if ( value_temp > value )
{
value = value_temp;
}
}
else
{
// Find the smallest (least positive) neighbor
if ( value_temp < value )
{
value = value_temp;
}
}
}
found_neighbor_flag = true;
}
}
if ( found_neighbor_flag )
{
// Set the new value using the smallest distance
// found in our "from" neighbors.
bool bounds_status;
unsigned int center = outputIt.Size() / 2;
UpdatePixel(sparsePtr->m_Index, center, outputIt, value, bounds_status);
// Update the rms change
m_RMSSum += ( value - outputIt.GetCenterPixel() ) * ( value - outputIt.GetCenterPixel() );
m_RMSCounter++;
++toIt;
}
else
{
// Did not find any neighbors on the "from" list, then promote this
// node. A "promote" value past the end of my sparse field size
// means delete the node instead. Change the status value in the
// status image accordingly.
node = toIt.GetPointer();
++toIt;
sparsePtr->m_Layers[to]->Unlink (node);
if ( promote > past_end )
{
sparsePtr->m_LayerNodeStore->Return (node);
// Reset the pixel status to null -- does not belong to sparse layer
statusIt.SetCenterPixel (m_StatusNull);
// Set the pixel to its default background value
this->m_LevelSet[sparsePtr->m_Index]->SetPixel(indexCurrent,
delta * this->m_BackgroundValue);
}
else
{
sparsePtr->m_Layers[promote]->PushFront (node);
statusIt.SetCenterPixel (promote);
}
}
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::InitializeIteration()
{
Superclass::InitializeIteration();
m_RMSSum = 0.;
m_RMSCounter = 0; // counter
// Set the values in the output image for the active layer.
this->InitializeActiveLayerValues();
// Initialize layer values using the active layer as seeds
this->PropagateAllLayerValues();
// Determine the average RMS of change during this iteration
if ( m_RMSCounter == 0 )
{
this->SetRMSChange ( static_cast< double >( 0. ) );
}
else
{
this->SetRMSChange ( std::sqrt (m_RMSSum / m_RMSCounter) );
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::Initialize()
{
// Initialize m_PixelDistance values for the corresponding neighborhood list
// This stores the distance between neighbors. Usually same as 1 except when
// the image spacing is different.
InputSpacingType spacing = this->m_LevelSet[0]->GetSpacing();
OffsetType offset;
this->m_PixelDistance.clear();
this->m_PixelDistance.resize ( m_NeighborList.GetSize() );
for ( unsigned int i = 0; i < m_NeighborList.GetSize(); ++i )
{
offset = m_NeighborList.GetNeighborhoodOffset (i);
m_PixelDistance[i] = 0;
for ( unsigned int j = 0; j < ImageDimension; j++ )
{
m_PixelDistance[i] += offset[j] * spacing[j] * offset[j] * spacing[j];
}
m_PixelDistance[i] = std::sqrt(m_PixelDistance[i]);
}
for ( IdCellType fId = 0; fId < this->m_FunctionCount; ++fId )
{
SparseDataStruct *sparsePtr = this->m_SparseData[fId];
// Allocate the status image.
sparsePtr->m_StatusImage = StatusImageType::New();
sparsePtr->m_StatusImage->SetRegions (
this->m_LevelSet[fId]->GetRequestedRegion() );
sparsePtr->m_StatusImage->CopyInformation(this->m_LevelSet[fId]);
sparsePtr->m_StatusImage->Allocate();
sparsePtr->m_StatusImage->FillBuffer(m_StatusNull); //NonpositiveMin
// Initialize the boundary pixels in the status image to
// m_StatusBoundaryPixel values. Uses the face calculator to find all of
// the region faces.
BFCType faceCalculator;
typename BFCType::FaceListType faceList;
// Set the difference function radius here
typename BFCType::SizeType sz = this->m_DifferenceFunctions[fId]->GetRadius();
typename BFCType::FaceListType::iterator fit;
// Compute the boundary pixel regions set in a container
faceList = faceCalculator (sparsePtr->m_StatusImage,
sparsePtr->m_StatusImage->GetRequestedRegion(), sz);
// Iterate over the boundary region sets
fit = faceList.begin();
for ( ++fit; fit != faceList.end(); ++fit )
{
// For each region, set the pixel in m_StatusImage to
// m_StatusBoundaryPixel
ImageRegionIterator< StatusImageType > statusIt(sparsePtr->m_StatusImage, *fit);
statusIt.GoToBegin();
while ( !statusIt.IsAtEnd() )
{
statusIt.Set (m_StatusBoundaryPixel);
++statusIt;
}
}
// Erase all existing layer lists -- element by element
for ( unsigned int i = 0; i < sparsePtr->m_Layers.size(); ++i )
{
while ( !sparsePtr->m_Layers[i]->Empty() )
{
sparsePtr->m_LayerNodeStore->Return( sparsePtr->m_Layers[i]->Front() );
sparsePtr->m_Layers[i]->PopFront();
}
}
// Allocate the layers for the sparse field.
sparsePtr->m_Layers.clear();
sparsePtr->m_Layers.reserve(2 * this->m_NumberOfLayers + 1);
while ( sparsePtr->m_Layers.size() < ( 2 * this->m_NumberOfLayers + 1 ) )
{
sparsePtr->m_Layers.push_back( LayerType::New() );
}
// Throw an exception if we don't have enough layers.
if ( sparsePtr->m_Layers.size() < 3 )
{
itkExceptionMacro (<< "Not enough layers have been allocated for the"
"sparse field. Requires at least one layer.");
}
}
// Set the background constants required to be set outside the sparse layer
this->InitializeBackgroundConstants();
// Construct the active layer and initialize the first layers inside and
// outside of the active layer for all level-set functions.
this->ConstructActiveLayer();
for ( IdCellType fId = 0; fId < this->m_FunctionCount; ++fId )
{
SparseDataStruct *sparsePtr = this->m_SparseData[fId];
// Construct the rest of the non-active set layers using the first two
// layers. Inside layers are odd numbers, outside layers are even numbers.
// We need to loop from i = 1 to m_Layers.size()-2 since the last two layers
// are constructed in the previous iteration
for ( unsigned int i = 1; i < sparsePtr->m_Layers.size() - 2; ++i )
{
// Construct layer i+2 from layer i. Note that layer i+1 is on the other
// side
this->ConstructLayer(sparsePtr, i, i + 2);
}
}
// Set the values in the output image for the active layer.
this->InitializeActiveLayerValues();
// Initialize layer values using the active layer as seeds
this->PropagateAllLayerValues();
// Initialize pixels outside the sparse field layers to positive
// and negative values, respectively. This is not necessary for the
// calculations, but is useful for presenting a more intuitive output to the
// filter. See PostProcessOutput method for more information.
this->InitializeBackgroundPixels();
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::InitializeBackgroundConstants()
{
// Determine the maximum spacing to set the background pixel values
// outside the sparse field
float maxSpacing = NumericTraits< float >::min();
InputSpacingType spacing = this->m_LevelSet[0]->GetSpacing();
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
maxSpacing = std::max( maxSpacing, static_cast< float >( spacing[i] ) );
}
// Assign background pixels OUTSIDE the sparse field layers to a new level
// set with value greater than the outermost layer. Assign background pixels
// INSIDE the sparse field layers to a new level set with value less than
// the innermost layer.
const ValueType max_layer = static_cast< ValueType >( this->m_NumberOfLayers );
this->m_BackgroundValue = ( max_layer + 1 ) * maxSpacing;
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::InitializeBackgroundPixels()
{
for ( IdCellType fId = 0; fId < this->m_FunctionCount; fId++ )
{
SparseDataStruct *sparsePtr = this->m_SparseData[fId];
ImageRegionConstIterator< StatusImageType > statusIt (
sparsePtr->m_StatusImage,
this->m_LevelSet[fId]->GetRequestedRegion() );
ImageRegionIterator< InputImageType > outputIt (
this->m_LevelSet[fId],
this->m_LevelSet[fId]->GetRequestedRegion() );
outputIt.GoToBegin();
statusIt.GoToBegin();
while ( !outputIt.IsAtEnd() )
{
if ( statusIt.Get() == m_StatusNull || statusIt.Get() ==
m_StatusBoundaryPixel )
{
if ( outputIt.Get() > 0 )
{
outputIt.Set (this->m_BackgroundValue);
}
if ( outputIt.Get() < 0 )
{
outputIt.Set (-this->m_BackgroundValue);
}
}
++outputIt;
++statusIt;
}
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::ConstructActiveLayer()
{
// We construct active layers for all level-set functions
for ( IdCellType fId = 0; fId < this->m_FunctionCount; fId++ )
{
SparseDataStruct *sparsePtr = this->m_SparseData[fId];
// We find the active layer by searching for 0's in the zero crossing
// image (output image). The first inside and outside layers are also
// constructed by searching the neighbors of the active layer in the
// (shifted) input image. Negative neighbors not in the active set are
// assigned to the inside, positive neighbors are assigned to the outside.
//
// During construction we also check whether any of the layers of the
// active set (or the active set itself) is sitting on a boundary pixel
// location. If this is the case, then we need to do active bounds
// checking in the solver.
NeighborhoodIterator< InputImageType >
outputIt ( m_NeighborList.GetRadius(),
this->m_LevelSet[fId],
this->m_LevelSet[fId]->GetRequestedRegion() );
NeighborhoodIterator< StatusImageType >
statusIt ( m_NeighborList.GetRadius(),
sparsePtr->m_StatusImage,
this->m_LevelSet[fId]->GetRequestedRegion() );
InputIndexType center_index, offset_index;
LayerNodeType *node;
bool bounds_status;
StatusType layer_number;
// Determine image bounds for checking if sparse layers touch boundaries
InputIndexType lowerBounds;
InputSizeType upperBounds;
lowerBounds = this->m_LevelSet[fId]->GetRequestedRegion().GetIndex();
upperBounds = this->m_LevelSet[fId]->GetRequestedRegion().GetSize();
// Iterate over the output image
outputIt.GoToBegin();
while ( !outputIt.IsAtEnd() )
{
// Check if the center pixel has a value 0. The zeroCrossingFilter has
// already placed 0s on the active layer pixels and 1 everywhere else.
if ( outputIt.GetCenterPixel() == m_ValueZero )
{
// Grab the neighborhood in the status image.
center_index = outputIt.GetIndex();
statusIt.SetLocation (center_index);
// Check to see if any of the sparse field touches a boundary. If so,
// then activate bounds checking.
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
if ( ( center_index[i] + static_cast< InputOffsetValueType >(
this->m_NumberOfLayers ) >= ( static_cast< InputIndexValueType >( upperBounds[i] ) - 1 ) )
|| center_index[i] - static_cast< InputOffsetValueType >(
this->m_NumberOfLayers ) <= static_cast< InputIndexValueType >( lowerBounds[i] ) )
{
m_BoundsCheckingActive = true;
}
}
// Borrow a node from the store and set its value.
node = sparsePtr->m_LayerNodeStore->Borrow();
node->m_Value = center_index;
// Add the node to the active list and set the status in the status
// image.
sparsePtr->m_Layers[0]->PushFront (node);
statusIt.SetCenterPixel (0);
// Search the neighborhood pixels for first inside & outside layer
// members. Construct these lists and set status list values.
for ( unsigned int i = 0; i < m_NeighborList.GetSize(); ++i )
{
// If the neighborhood pixel is not on the active layer
// determine its sign to assign to outside or inside layers
unsigned int neighborIndex = m_NeighborList.GetArrayIndex(i);
if ( outputIt.GetPixel(neighborIndex) != m_ValueZero )
{
// Determine if the neighbor belongs to layer 1 (inside) or 2
// (outside)
layer_number = ( outputIt.GetPixel (neighborIndex) > 0 ) ? 2 : 1;
// This check is to prevent the same pixel from being included more
// than once
// in the list
if ( statusIt.GetPixel(neighborIndex) == m_StatusNull )
{
statusIt.SetPixel (neighborIndex, layer_number, bounds_status);
if ( bounds_status ) // In bounds.
{
offset_index = center_index + m_NeighborList.GetNeighborhoodOffset (i);
node = sparsePtr->m_LayerNodeStore->Borrow();
node->m_Value = offset_index;
sparsePtr->m_Layers[layer_number]->PushFront (node);
} // else do nothing.
}
}
}
}
++outputIt;
}
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::ConstructLayer(SparseDataStruct *sparsePtr, StatusType from, StatusType to)
{
LayerNodeType *node;
bool boundary_status;
NeighborhoodIterator< StatusImageType > statusIt (
m_NeighborList.GetRadius(), sparsePtr->m_StatusImage,
this->m_LevelSet[sparsePtr->m_Index]->GetRequestedRegion() );
typename LayerType::ConstIterator fromIt;
fromIt = sparsePtr->m_Layers[from]->Begin();
// For all indices in the "from" layer...
while ( fromIt != sparsePtr->m_Layers[from]->End() )
{
// Search the neighborhood of this index in the status image for
// unassigned indices. Push those indices onto the "to" layer and
// assign them values in the status image. Status pixels outside the
// boundary will be ignored.
statusIt.SetLocation (fromIt->m_Value);
for ( unsigned int i = 0; i < m_NeighborList.GetSize(); ++i )
{
// If the pixel is not a boundary pixel or belongs to another layer
unsigned int neighborIndex = m_NeighborList.GetArrayIndex (i);
if ( statusIt.GetPixel (neighborIndex) == m_StatusNull )
{
statusIt.SetPixel (neighborIndex, to, boundary_status);
if ( boundary_status == true ) // in bounds
{
node = sparsePtr->m_LayerNodeStore->Borrow();
node->m_Value = statusIt.GetIndex() + m_NeighborList.GetNeighborhoodOffset (i);
sparsePtr->m_Layers[to]->PushFront (node);
}
}
}
++fromIt;
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::PostProcessOutput()
{
// Get the output pointer and clear its contents
OutputImagePointer output = this->GetOutput();
output->FillBuffer(NumericTraits< OutputPixelType >::ZeroValue());
// Set the values in the levelset image for the active layer.
this->InitializeActiveLayerValues();
// Initialize layer values using the active layer as seeds.
this->PropagateAllLayerValues();
// Initialize pixels outside the sparse field layers to positive
// and negative values, respectively. This is not necessary for the
// calculations, but is useful for presenting a more intuitive output to the
// filter.
this->InitializeBackgroundPixels();
for ( IdCellType fId = 0; fId < this->m_FunctionCount; fId++ )
{
InputImagePointer input = this->m_LevelSet[fId];
InputPointType origin = input->GetOrigin();
// Local iterator
ImageRegionIterator< InputImageType > inIt ( this->m_LevelSet[fId],
this->m_LevelSet[fId]->GetRequestedRegion() );
// In the context of the global coordinates
OutputIndexType start;
output->TransformPhysicalPointToIndex(origin, start);
// Defining sub-region in the global coordinates
OutputRegionType region;
region.SetSize( input->GetRequestedRegion().GetSize() );
region.SetIndex(start);
if ( !input || !output )
{
itkExceptionMacro (<< "Either input and/or output is ITK_NULLPTR.");
}
ImageRegionIterator< OutputImageType > outIt (output, region);
OutputPixelType p = static_cast< OutputPixelType >( this->m_Lookup[fId] );
inIt.GoToBegin();
outIt.GoToBegin();
while ( !outIt.IsAtEnd() )
{
if ( inIt.Get() < 0 )
{
outIt.Value() = p;
}
++inIt;
++outIt;
}
}
}
template< typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction, typename TIdCell >
void
MultiphaseSparseFiniteDifferenceImageFilter< TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "m_IsoSurfaceValue: " << this->m_IsoSurfaceValue << std::endl;
os << indent << "m_BoundsCheckingActive: " << m_BoundsCheckingActive;
for ( IdCellType i = 0; i < this->m_FunctionCount; i++ )
{
SparseDataStruct *sparsePtr = this->m_SparseData[i];
os << indent << "m_LayerNodeStore: " << std::endl;
sparsePtr->m_LayerNodeStore->Print ( os, indent.GetNextIndent() );
for ( i = 0; i < sparsePtr->m_Layers.size(); i++ )
{
os << indent << "m_Layers[" << i << "]: size="
<< sparsePtr->m_Layers[i]->Size() << std::endl;
os << indent << sparsePtr->m_Layers[i];
}
os << indent << "m_UpdateBuffer: size="
<< static_cast< InputSizeValueType >( sparsePtr->m_UpdateBuffer.size() )
<< " capacity = "
<< static_cast< InputSizeValueType >( sparsePtr->m_UpdateBuffer.capacity() )
<< std::endl;
}
os << indent << "Interpolate Surface Location " << m_InterpolateSurfaceLocation << std::endl;
os << indent << "Number of Layers " << m_NumberOfLayers << std::endl;
os << indent << "Value Zero "
<< static_cast< typename NumericTraits< ValueType >::PrintType >( m_ValueZero ) << std::endl;
os << indent << "Value One "
<< static_cast< typename NumericTraits< ValueType >::PrintType >( m_ValueOne ) << std::endl;
}
} // end namespace itk
#endif
|