File: itkStochasticFractalDimensionImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.10.1-dfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 416,780 kB
  • ctags: 104,347
  • sloc: cpp: 553,142; ansic: 142,389; fortran: 34,788; python: 16,392; lisp: 2,070; sh: 1,862; tcl: 993; java: 362; perl: 200; makefile: 111; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (231 lines) | stat: -rw-r--r-- 7,619 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkStochasticFractalDimensionImageFilter_hxx
#define itkStochasticFractalDimensionImageFilter_hxx

#include "itkStochasticFractalDimensionImageFilter.h"

#include "itkNeighborhoodAlgorithm.h"
#include "itkProgressReporter.h"

#include <vector>

namespace itk
{
template< typename TInputImage, typename TMaskImage, typename TOutputImage >
StochasticFractalDimensionImageFilter< TInputImage, TMaskImage, TOutputImage >
::StochasticFractalDimensionImageFilter()
{
  this->m_NeighborhoodRadius.Fill(2);

  this->m_MaskImage = ITK_NULLPTR;
}

template< typename TInputImage, typename TMaskImage, typename TOutputImage >
StochasticFractalDimensionImageFilter< TInputImage, TMaskImage, TOutputImage >
::~StochasticFractalDimensionImageFilter()
{}

template< typename TInputImage, typename TMaskImage, typename TOutputImage >
void
StochasticFractalDimensionImageFilter< TInputImage, TMaskImage, TOutputImage >
::SetMaskImage(const MaskImageType *mask)
{
  this->SetNthInput( 1, const_cast< MaskImageType * >( mask ) );
}

template< typename TInputImage, typename TMaskImage, typename TOutputImage >
const typename StochasticFractalDimensionImageFilter< TInputImage, TMaskImage, TOutputImage >::MaskImageType *
StochasticFractalDimensionImageFilter< TInputImage, TMaskImage, TOutputImage >
::GetMaskImage() const
{
  const MaskImageType *maskImage =
    dynamic_cast< const MaskImageType * >( this->ProcessObject::GetInput(1) );

  return maskImage;
}

template< typename TInputImage, typename TMaskImage, typename TOutputImage >
void
StochasticFractalDimensionImageFilter< TInputImage, TMaskImage, TOutputImage >
::GenerateData()
{
  this->AllocateOutputs();

  typedef typename InputImageType::PixelType  InputPixelType;
  typedef typename OutputImageType::PixelType OutputPixelType;
  typedef typename InputImageType::PointType  PointType;

  const InputImageType *inputImage = this->GetInput();
  OutputImageType      *outputImage = this->GetOutput();
  typename InputImageType::RegionType region = inputImage->GetRequestedRegion();

  ProgressReporter progress(this, 0, region.GetNumberOfPixels(), 100);

  typedef typename NeighborhoodAlgorithm
  ::ImageBoundaryFacesCalculator< InputImageType > FaceCalculatorType;
  FaceCalculatorType faceCalculator;

  typename FaceCalculatorType::FaceListType faceList =
    faceCalculator(inputImage, region, this->m_NeighborhoodRadius);

  typename FaceCalculatorType::FaceListType::iterator fit;

  typename InputImageType::SpacingType spacing = inputImage->GetSpacing();

  RealType minSpacing = spacing[0];

  for ( unsigned int d = 0; d < ImageDimension; d++ )
    {
    if ( spacing[d] < minSpacing )
      {
      minSpacing = spacing[d];
      }
    }

  std::vector< RealType > distances;
  std::vector< RealType > distancesFrequency;
  std::vector< RealType > averageAbsoluteIntensityDifference;

  for ( fit = faceList.begin(); fit != faceList.end(); ++fit )
    {
    ConstNeighborhoodIteratorType It(
      this->m_NeighborhoodRadius, inputImage, *fit);

    NeighborhoodIterator< OutputImageType > ItO(
      this->m_NeighborhoodRadius, outputImage, *fit);

    for ( It.GoToBegin(), ItO.GoToBegin(); !It.IsAtEnd(); ++It, ++ItO )
      {
      if ( this->m_MaskImage && !this->m_MaskImage->GetPixel( It.GetIndex() ) )
        {
        ItO.SetCenterPixel(NumericTraits< OutputPixelType >::ZeroValue());
        progress.CompletedPixel();
        continue;
        }

      distances.clear();
      distancesFrequency.clear();
      averageAbsoluteIntensityDifference.clear();

      for ( unsigned int i = 0; i < It.GetNeighborhood().Size(); i++ )
        {
        bool           IsInBounds1;
        InputPixelType pixel1 = It.GetPixel(i, IsInBounds1);

        if ( !IsInBounds1 )
          {
          continue;
          }

        if ( !this->m_MaskImage || this->m_MaskImage->GetPixel( It.GetIndex(i) ) )
          {
          PointType point1;
          inputImage->TransformIndexToPhysicalPoint(It.GetIndex(i), point1);

          for ( unsigned int j = 0; j < It.GetNeighborhood().Size(); j++ )
            {
            if ( i == j )
              {
              continue;
              }

            bool           IsInBounds2;
            InputPixelType pixel2 = It.GetPixel(j, IsInBounds2);

            if ( !IsInBounds2 )
              {
              continue;
              }

            if ( !this->m_MaskImage || this->m_MaskImage->GetPixel( It.GetIndex(j) ) )
              {
              PointType point2;
              inputImage->TransformIndexToPhysicalPoint(It.GetIndex(j), point2);

              const RealType distance = point1.SquaredEuclideanDistanceTo(point2);

              bool distanceFound = false;
              for ( unsigned int k = 0; k < distances.size(); k++ )
                {
                if ( itk::Math::abs(distances[k] - distance) < 0.5 * minSpacing )
                  {
                  distancesFrequency[k]++;
                  averageAbsoluteIntensityDifference[k] += itk::Math::abs(pixel1 - pixel2);
                  distanceFound = true;
                  break;
                  }
                }

              if ( !distanceFound )
                {
                distances.push_back(distance);
                distancesFrequency.push_back(1);
                averageAbsoluteIntensityDifference.push_back( itk::Math::abs(pixel1 - pixel2) );
                }
              }
            }
          }
        }

      RealType sumY = 0.0;
      RealType sumX = 0.0;
      RealType sumXY = 0.0;
      RealType sumXX = 0.0;

      for ( unsigned int k = 0; k < distances.size(); k++ )
        {
        if ( distancesFrequency[k] == 0 )
          {
          continue;
          }

        averageAbsoluteIntensityDifference[k] /= static_cast< RealType >( distancesFrequency[k] );
        averageAbsoluteIntensityDifference[k] = std::log(averageAbsoluteIntensityDifference[k]);

        const RealType distance = std::log( std::sqrt(distances[k]) );

        sumY += averageAbsoluteIntensityDifference[k];
        sumX += distance;
        sumXX += ( distance * distance );
        sumXY += ( averageAbsoluteIntensityDifference[k] * distance );
        }

      const RealType N = static_cast< RealType >( distances.size() );

      const RealType slope = ( N * sumXY - sumX * sumY ) / ( N * sumXX - sumX * sumX );

      ItO.SetCenterPixel( static_cast< OutputPixelType >( 3.0 - slope ) );

      progress.CompletedPixel();
      }
    }
}

template< typename TInputImage, typename TMaskImage, typename TOutputImage >
void
StochasticFractalDimensionImageFilter< TInputImage, TMaskImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Neighborhood radius: " << this->m_NeighborhoodRadius << std::endl;
}
} // end namespace itk

#endif