1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkValuedRegionalExtremaImageFilter_hxx
#define itkValuedRegionalExtremaImageFilter_hxx
#include "itkImageRegionIterator.h"
#include "itkNumericTraits.h"
#include "itkValuedRegionalExtremaImageFilter.h"
#include "itkProgressReporter.h"
#include "itkConnectedComponentAlgorithm.h"
/*
*
* This code was contributed in the Insight Journal paper:
* "Finding regional extrema - methods and performance"
* by Beare R., Lehmann G.
* https://hdl.handle.net/1926/153
* http://www.insight-journal.org/browse/publication/65
*
*/
namespace itk
{
template< typename TInputImage, typename TOutputImage, typename TFunction1,
typename TFunction2 >
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
TFunction2 >
::ValuedRegionalExtremaImageFilter():m_MarkerValue(0)
{
m_FullyConnected = false;
// not really useful, just to always have the same value before
//the filter has run
m_Flat = false;
}
template< typename TInputImage, typename TOutputImage, typename TFunction1,
typename TFunction2 >
void
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
TFunction2 >
::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// We need all the input.
InputImagePointer input = const_cast< InputImageType * >( this->GetInput() );
if ( !input )
{
return;
}
input->SetRequestedRegion( input->GetLargestPossibleRegion() );
}
template< typename TInputImage, typename TOutputImage, typename TFunction1,
typename TFunction2 >
void
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
TFunction2 >
::EnlargeOutputRequestedRegion(DataObject *)
{
this->GetOutput()
->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}
template< typename TInputImage, typename TOutputImage, typename TFunction1,
typename TFunction2 >
void
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
TFunction2 >
::GenerateData()
{
// Allocate the output
this->AllocateOutputs();
// 2 phases
ProgressReporter progress(this, 0,
this->GetOutput()->GetRequestedRegion().GetNumberOfPixels() * 2);
// copy input to output - isn't there a better way?
typedef ImageRegionConstIterator< TInputImage > InputIterator;
typedef ImageRegionIterator< TOutputImage > OutputIterator;
InputIterator inIt( this->GetInput(),
this->GetOutput()->GetRequestedRegion() );
OutputIterator outIt( this->GetOutput(),
this->GetOutput()->GetRequestedRegion() );
inIt.GoToBegin();
outIt.GoToBegin();
InputImagePixelType firstValue = inIt.Get();
this->m_Flat = true;
while ( !outIt.IsAtEnd() )
{
InputImagePixelType currentValue = inIt.Get();
outIt.Set( static_cast< OutputImagePixelType >( currentValue ) );
if ( currentValue != firstValue )
{
this->m_Flat = false;
}
++inIt;
++outIt;
progress.CompletedPixel();
}
// if the image is flat, there is no need to do the work:
// the image will be unchanged
if ( !this->m_Flat )
{
// Now for the real work!
// More iterators - use shaped ones so that we can set connectivity
// Note : all comments refer to finding regional minima, because
// it is briefer and clearer than trying to describe both regional
// maxima and minima processes at the same time
ISizeType kernelRadius;
kernelRadius.Fill(1);
NOutputIterator outNIt( kernelRadius,
this->GetOutput(),
this->GetOutput()->GetRequestedRegion() );
setConnectivity(&outNIt, m_FullyConnected);
ConstInputIterator inNIt( kernelRadius,
this->GetInput(),
this->GetOutput()->GetRequestedRegion() );
setConnectivity(&inNIt, m_FullyConnected);
ConstantBoundaryCondition< OutputImageType > iBC;
iBC.SetConstant(m_MarkerValue);
inNIt.OverrideBoundaryCondition(&iBC);
ConstantBoundaryCondition< OutputImageType > oBC;
oBC.SetConstant(m_MarkerValue);
outNIt.OverrideBoundaryCondition(&oBC);
TFunction1 compareIn;
TFunction2 compareOut;
outIt.GoToBegin();
// set up the stack and neighbor list
IndexStack IS;
typename NOutputIterator::IndexListType IndexList;
IndexList = outNIt.GetActiveIndexList();
while ( !outIt.IsAtEnd() )
{
OutputImagePixelType V = outIt.Get();
// if the output pixel value = the marker value then we have
// already visited this pixel and don't need to do so again
if ( compareOut(V, m_MarkerValue) )
{
// reposition the input iterator
inNIt += outIt.GetIndex() - inNIt.GetIndex();
InputImagePixelType Cent = static_cast< InputImagePixelType >( V );
// check each neighbor of the input pixel
typename ConstInputIterator::ConstIterator sIt;
for ( sIt = inNIt.Begin(); !sIt.IsAtEnd(); ++sIt )
{
InputImagePixelType Adjacent = sIt.Get();
if ( compareIn(Adjacent, Cent) )
{
// The centre pixel cannot be part of a regional minima
// because one of its neighbors is smaller.
// Set all pixels in the output image that are connected to
// the centre pixel and have the same value to
// m_MarkerValue
// This is the flood filling step. It is a simple, stack
// based, procedure. The original value (V) of the pixel is
// recorded and the pixel index in the output image
// is set to the marker value. The stack is initialized
// with the pixel index. The flooding procedure pops the
// stack, sets that index to the marker value and places the
// indexes of all neighbors with value V on the stack. The
// process terminates when the stack is empty.
outNIt += outIt.GetIndex() - outNIt.GetIndex();
OutputImagePixelType NVal;
OutIndexType idx;
// Initialize the stack
IS.push( outNIt.GetIndex() );
outNIt.SetCenterPixel(m_MarkerValue);
typename NOutputIterator::IndexListType::const_iterator LIt;
while ( !IS.empty() )
{
// Pop the stack
idx = IS.top();
IS.pop();
// position the iterator
outNIt += idx - outNIt.GetIndex();
// check neighbors
for ( LIt = IndexList.begin(); LIt != IndexList.end(); ++LIt )
{
NVal = outNIt.GetPixel(*LIt);
if ( NVal == V )
{
// still in a flat zone
IS.push( outNIt.GetIndex(*LIt) );
// set the output as the marker value
outNIt.SetPixel(*LIt, m_MarkerValue);
}
}
}
// end flooding
break;
}
}
}
++outIt;
progress.CompletedPixel();
}
}
}
template< typename TInputImage, typename TOutputImage, typename TFunction1,
typename TFunction2 >
void
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
TFunction2 >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "FullyConnected: " << m_FullyConnected << std::endl;
os << indent << "Flat: " << m_Flat << std::endl;
os << indent << "MarkerValue: " << m_MarkerValue << std::endl;
}
} // end namespace itk
#endif
|