File: itkValuedRegionalExtremaImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.10.1-dfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 416,780 kB
  • ctags: 104,347
  • sloc: cpp: 553,142; ansic: 142,389; fortran: 34,788; python: 16,392; lisp: 2,070; sh: 1,862; tcl: 993; java: 362; perl: 200; makefile: 111; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (252 lines) | stat: -rw-r--r-- 8,701 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkValuedRegionalExtremaImageFilter_hxx
#define itkValuedRegionalExtremaImageFilter_hxx

#include "itkImageRegionIterator.h"
#include "itkNumericTraits.h"
#include "itkValuedRegionalExtremaImageFilter.h"
#include "itkProgressReporter.h"
#include "itkConnectedComponentAlgorithm.h"

/*
 *
 * This code was contributed in the Insight Journal paper:
 * "Finding regional extrema - methods and performance"
 * by Beare R., Lehmann G.
 * https://hdl.handle.net/1926/153
 * http://www.insight-journal.org/browse/publication/65
 *
 */

namespace itk
{
template< typename TInputImage, typename TOutputImage, typename TFunction1,
          typename TFunction2 >
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
                                  TFunction2 >
::ValuedRegionalExtremaImageFilter():m_MarkerValue(0)
{
  m_FullyConnected = false;

  // not really useful, just to always have the same value before
  //the filter has run
  m_Flat = false;
}

template< typename TInputImage, typename TOutputImage, typename TFunction1,
          typename TFunction2 >
void
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
                                  TFunction2 >
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // We need all the input.
  InputImagePointer input = const_cast< InputImageType * >( this->GetInput() );
  if ( !input )
    {
    return;
    }

  input->SetRequestedRegion( input->GetLargestPossibleRegion() );
}

template< typename TInputImage, typename TOutputImage, typename TFunction1,
          typename TFunction2 >
void
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
                                  TFunction2 >
::EnlargeOutputRequestedRegion(DataObject *)
{
  this->GetOutput()
  ->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}

template< typename TInputImage, typename TOutputImage, typename TFunction1,
          typename TFunction2 >
void
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
                                  TFunction2 >
::GenerateData()
{
  // Allocate the output
  this->AllocateOutputs();

  // 2 phases
  ProgressReporter progress(this, 0,
                            this->GetOutput()->GetRequestedRegion().GetNumberOfPixels() * 2);

  // copy input to output - isn't there a better way?
  typedef ImageRegionConstIterator< TInputImage > InputIterator;
  typedef ImageRegionIterator< TOutputImage >     OutputIterator;

  InputIterator inIt( this->GetInput(),
                      this->GetOutput()->GetRequestedRegion() );
  OutputIterator outIt( this->GetOutput(),
                        this->GetOutput()->GetRequestedRegion() );
  inIt.GoToBegin();
  outIt.GoToBegin();

  InputImagePixelType firstValue = inIt.Get();
  this->m_Flat = true;

  while ( !outIt.IsAtEnd() )
    {
    InputImagePixelType currentValue = inIt.Get();
    outIt.Set( static_cast< OutputImagePixelType >( currentValue ) );
    if ( currentValue != firstValue )
      {
      this->m_Flat = false;
      }
    ++inIt;
    ++outIt;
    progress.CompletedPixel();
    }

  // if the image is flat, there is no need to do the work:
  // the image will be unchanged
  if ( !this->m_Flat )
    {
    // Now for the real work!
    // More iterators - use shaped ones so that we can set connectivity
    // Note : all comments refer to finding regional minima, because
    // it is briefer and clearer than trying to describe both regional
    // maxima and minima processes at the same time
    ISizeType kernelRadius;
    kernelRadius.Fill(1);
    NOutputIterator outNIt( kernelRadius,
                            this->GetOutput(),
                            this->GetOutput()->GetRequestedRegion() );
    setConnectivity(&outNIt, m_FullyConnected);

    ConstInputIterator inNIt( kernelRadius,
                              this->GetInput(),
                              this->GetOutput()->GetRequestedRegion() );
    setConnectivity(&inNIt, m_FullyConnected);

    ConstantBoundaryCondition< OutputImageType > iBC;
    iBC.SetConstant(m_MarkerValue);
    inNIt.OverrideBoundaryCondition(&iBC);

    ConstantBoundaryCondition< OutputImageType > oBC;
    oBC.SetConstant(m_MarkerValue);
    outNIt.OverrideBoundaryCondition(&oBC);

    TFunction1 compareIn;
    TFunction2 compareOut;

    outIt.GoToBegin();
    // set up the stack and neighbor list
    IndexStack IS;
    typename NOutputIterator::IndexListType IndexList;
    IndexList = outNIt.GetActiveIndexList();

    while ( !outIt.IsAtEnd() )
      {
      OutputImagePixelType V = outIt.Get();
      // if the output pixel value = the marker value then we have
      // already visited this pixel and don't need to do so again
      if ( compareOut(V, m_MarkerValue) )
        {
        // reposition the input iterator
        inNIt += outIt.GetIndex() - inNIt.GetIndex();

        InputImagePixelType Cent = static_cast< InputImagePixelType >( V );

        // check each neighbor of the input pixel
        typename ConstInputIterator::ConstIterator sIt;
        for ( sIt = inNIt.Begin(); !sIt.IsAtEnd(); ++sIt )
          {
          InputImagePixelType Adjacent = sIt.Get();
          if ( compareIn(Adjacent, Cent) )
            {
            // The centre pixel cannot be part of a regional minima
            // because one of its neighbors is smaller.
            // Set all pixels in the output image that are connected to
            // the centre pixel and have the same value to
            // m_MarkerValue
            // This is the flood filling step. It is a simple, stack
            // based, procedure. The original value (V) of the pixel is
            // recorded and the pixel index in the output image
            // is set to the marker value. The stack is initialized
            // with the pixel index. The flooding procedure pops the
            // stack, sets that index to the marker value and places the
            // indexes of all neighbors with value V on the stack. The
            // process terminates when the stack is empty.

            outNIt += outIt.GetIndex() - outNIt.GetIndex();

            OutputImagePixelType NVal;
            OutIndexType         idx;
            // Initialize the stack
            IS.push( outNIt.GetIndex() );
            outNIt.SetCenterPixel(m_MarkerValue);

            typename NOutputIterator::IndexListType::const_iterator LIt;

            while ( !IS.empty() )
              {
              // Pop the stack
              idx = IS.top();
              IS.pop();
              // position the iterator
              outNIt += idx - outNIt.GetIndex();
              // check neighbors
              for ( LIt = IndexList.begin(); LIt != IndexList.end(); ++LIt )
                {
                NVal = outNIt.GetPixel(*LIt);
                if ( NVal == V )
                  {
                  // still in a flat zone
                  IS.push( outNIt.GetIndex(*LIt) );

                  // set the output as the marker value
                  outNIt.SetPixel(*LIt, m_MarkerValue);
                  }
                }
              }
            // end flooding
            break;
            }
          }
        }
      ++outIt;
      progress.CompletedPixel();
      }
    }
}

template< typename TInputImage, typename TOutputImage, typename TFunction1,
          typename TFunction2 >
void
ValuedRegionalExtremaImageFilter< TInputImage, TOutputImage, TFunction1,
                                  TFunction2 >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "FullyConnected: "  << m_FullyConnected << std::endl;
  os << indent << "Flat: "            << m_Flat << std::endl;
  os << indent << "MarkerValue: "     << m_MarkerValue << std::endl;
}
} // end namespace itk

#endif