File: itkDiscreteGaussianDerivativeImageFunctionTest.cxx

package info (click to toggle)
insighttoolkit4 4.10.1-dfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 416,780 kB
  • ctags: 104,347
  • sloc: cpp: 553,142; ansic: 142,389; fortran: 34,788; python: 16,392; lisp: 2,070; sh: 1,862; tcl: 993; java: 362; perl: 200; makefile: 111; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (246 lines) | stat: -rw-r--r-- 8,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkDiscreteGaussianDerivativeImageFunction.h"
#include "itkRescaleIntensityImageFilter.h"

template < int VDimension >
int itkDiscreteGaussianDerivativeImageFunctionTestND( int argc, char* argv[] )
{

  // Verify the number of parameters in the command line
  if( argc < 5 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "inputFileName outputFileName order sigma (maximum_error) (maximum_kernel_width)" << std::endl;
    return EXIT_FAILURE;
    }

  // Define the dimension of the images
  const unsigned int Dimension = VDimension;
  typedef float                            PixelType;
  typedef itk::Image<PixelType, Dimension> ImageType;

  // Read input
  typedef itk::ImageFileReader< ImageType > ReaderType;
  typename ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );
  try
    {
    reader->Update();
    }
  catch ( itk::ExceptionObject &err)
    {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return EXIT_FAILURE;
    }
  ImageType *inputImage = reader->GetOutput();

  // Create image for storing result
  typename ImageType::Pointer output = ImageType::New();
  output->SetSpacing( inputImage->GetSpacing() );
  output->SetOrigin( inputImage->GetOrigin() );
  output->SetDirection( inputImage->GetDirection() );
  output->SetLargestPossibleRegion( inputImage->GetLargestPossibleRegion() );
  output->SetRequestedRegion( inputImage->GetRequestedRegion() );
  output->SetBufferedRegion( inputImage->GetBufferedRegion() );
  output->Allocate();
  output->FillBuffer( itk::NumericTraits<PixelType>::ZeroValue() );

  // Setup operator parameters
  unsigned int order[Dimension];
  for (unsigned int i = 0; i < Dimension; i++)
    {
    order[i] = atoi( argv[3] );
    }

  double variance = atof( argv[4] );
  variance *= variance;

  double maxError = 0.001;
  unsigned int maxKernelWidth = 100;
  if( argc == 6 )
    {
    maxError = atof( argv[5] );
    }
  else if( argc > 6 )
    {
    maxError = atof( argv[5] );
    maxKernelWidth = atoi( argv[6] );
    }

  // Create function
  typedef itk::DiscreteGaussianDerivativeImageFunction< ImageType, PixelType >
    GaussianDerivativeImageFunctionType;
  typename GaussianDerivativeImageFunctionType::Pointer function =
    GaussianDerivativeImageFunctionType::New();
  function->SetInputImage( inputImage );
  function->SetMaximumError( maxError );
  function->SetMaximumKernelWidth( maxKernelWidth );
  function->SetVariance( variance );
  function->SetOrder( order );
  function->SetNormalizeAcrossScale( true );
  function->SetUseImageSpacing( true );
  function->SetInterpolationMode( GaussianDerivativeImageFunctionType::NearestNeighbourInterpolation );
  function->Initialize( );

  // Step over input and output images
  typedef itk::ImageRegionConstIterator< ImageType > ConstIteratorType;
  typedef itk::ImageRegionIterator< ImageType >      IteratorType;

  ConstIteratorType it ( inputImage, inputImage->GetRequestedRegion() );
  it.GoToBegin();
  IteratorType out( output, output->GetRequestedRegion() );
  out.GoToBegin();

  typedef typename GaussianDerivativeImageFunctionType::PointType  PointType;
  PointType point;
  typedef typename GaussianDerivativeImageFunctionType::ContinuousIndexType ContinuousIndexType;
  ContinuousIndexType cindex;
  const unsigned long nop = inputImage->GetRequestedRegion().GetNumberOfPixels();
  unsigned long pixelNumber = 0;
  while( !it.IsAtEnd() )
    {
    // To test all available Evaluate functions, we split it in three parts.
    if ( pixelNumber < nop / 3 )
      {
      out.Set( function->EvaluateAtIndex( it.GetIndex() ) );
      }
    else if ( pixelNumber < nop * 2 / 3 )
      {
      inputImage->TransformIndexToPhysicalPoint( it.GetIndex(), point );
      out.Set( function->Evaluate( point ) );
      }
    else
      {
      inputImage->TransformIndexToPhysicalPoint( it.GetIndex(), point );
      inputImage->TransformPhysicalPointToContinuousIndex( point, cindex );
      out.Set( function->EvaluateAtContinuousIndex( cindex ) );
      }
    ++it;
    ++out;
    ++pixelNumber;
    }

  // Rescale output
  typedef unsigned char                                                   OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension >                        OutputImageType;
  typedef itk::RescaleIntensityImageFilter< ImageType, OutputImageType >  RescaleType;

  typename RescaleType::Pointer rescaler = RescaleType::New();
  rescaler->SetInput( output );
  rescaler->SetOutputMinimum( itk::NumericTraits<OutputPixelType>::min() );
  rescaler->SetOutputMaximum( itk::NumericTraits<OutputPixelType>::max() );

  // Write output
  typedef itk::ImageFileWriter< OutputImageType > WriterType;
  typename WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );
  writer->SetInput( rescaler->GetOutput() );
  try
    {
    writer->Update();
    }
  catch ( itk::ExceptionObject &err)
    {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return EXIT_FAILURE;
    }

  // Test some functions
  typedef typename GaussianDerivativeImageFunctionType::VarianceArrayType VarianceArrayType;
  VarianceArrayType varReturned = function->GetVariance();
  for ( unsigned int i = 0; i < Dimension; ++i )
  {
    if ( varReturned[ i ] != variance )
    {
      std::cout << "GetVariance()[" << i << "] failed. Expected: "
        << variance
        << " but got: "
        << varReturned[ i ] << std::endl;
      return EXIT_FAILURE;
    }
  }
  typedef typename GaussianDerivativeImageFunctionType::OrderArrayType  OrderArrayType;
  OrderArrayType orderReturned = function->GetOrder();
  for ( unsigned int i = 0; i < Dimension; ++i )
  {
    if ( orderReturned[ i ] != order[ i ] )
    {
      std::cout << "GetOrder()[" << i << "] failed. Expected: "
        << order[ i ]
        << " but got: "
        << orderReturned[ i ] << std::endl;
      return EXIT_FAILURE;
    }
  }
  if ( function->GetMaximumError() != maxError )
  {
    std::cout << "GetMaximumError failed. Expected: "
      << maxError
      << " but got: "
      << function->GetMaximumError() << std::endl;
    return EXIT_FAILURE;
  }
  if ( function->GetNormalizeAcrossScale() != true )
  {
    std::cout << "GetNormalizeAcrossScale failed. Expected: "
      << true
      << " but got: "
      << function->GetNormalizeAcrossScale() << std::endl;
    return EXIT_FAILURE;
  }
  if ( function->GetUseImageSpacing() != true )
  {
    std::cout << "GetUseImageSpacing failed. Expected: "
      << true
      << " but got: "
      << function->GetUseImageSpacing() << std::endl;
    return EXIT_FAILURE;
  }
  if ( function->GetMaximumKernelWidth() != maxKernelWidth )
  {
    std::cout << "GetMaximumKernelWidth failed. Expected: "
      << maxKernelWidth
      << " but got: "
      << function->GetMaximumKernelWidth() << std::endl;
    return EXIT_FAILURE;
  }
  if ( function->GetInterpolationMode() != GaussianDerivativeImageFunctionType::NearestNeighbourInterpolation )
  {
    std::cout << "GetInterpolationMode failed. Expected: "
      << GaussianDerivativeImageFunctionType::NearestNeighbourInterpolation
      << " but got: "
      << function->GetInterpolationMode() << std::endl;
    return EXIT_FAILURE;
  }

  // Call PrintSelf.
  function->Print( std::cout );

  return EXIT_SUCCESS;
}

int itkDiscreteGaussianDerivativeImageFunctionTest(int argc, char* argv[] )
{
  return itkDiscreteGaussianDerivativeImageFunctionTestND< 2 >( argc, argv );
}