File: itkKappaStatisticImageToImageMetricTest.cxx

package info (click to toggle)
insighttoolkit4 4.10.1-dfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 416,780 kB
  • ctags: 104,347
  • sloc: cpp: 553,142; ansic: 142,389; fortran: 34,788; python: 16,392; lisp: 2,070; sh: 1,862; tcl: 993; java: 362; perl: 200; makefile: 111; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (273 lines) | stat: -rw-r--r-- 9,850 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkKappaStatisticImageToImageMetric.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkTranslationTransform.h"
#include "itkMath.h"

/**
 *  This test exercised the various methods in the
 *  itkKappaStatisticImageToImageMetric class.  Two binary images are
 *  created for testing purposes -- one of a square and another of the
 *  same square translated in both x and y.
 *
 */

int itkKappaStatisticImageToImageMetricTest(int, char* [] )
{
  typedef itk::Image< unsigned char, 2 >                                               UCharImage2DType;
  typedef itk::Image< double, 2 >                                                      DoubleImage2DType;
  typedef itk::KappaStatisticImageToImageMetric< UCharImage2DType, UCharImage2DType >  MetricType;
  typedef itk::ImageRegionIteratorWithIndex< UCharImage2DType >                        UCharIteratorType;
  typedef itk::ImageRegionIteratorWithIndex< DoubleImage2DType >                       DoubleIteratorType;
  typedef itk::TranslationTransform< double, 2 >                                       TransformType;
  typedef itk::NearestNeighborInterpolateImageFunction< UCharImage2DType, double >     InterpolatorType;

  double epsilon = 0.000001;

  TransformType::Pointer    transform    = TransformType::New();
  InterpolatorType::Pointer interpolator = InterpolatorType::New();

  UCharImage2DType::SizeType imageSize;
  imageSize[0] = 128;
  imageSize[1] = 128;

  // Create fixed image
  UCharImage2DType::Pointer fixedImage = UCharImage2DType::New();
  fixedImage->SetRegions(imageSize);
  fixedImage->Allocate(true); // initialize
                                                     // buffer to zero
  fixedImage->Update();

  UCharIteratorType fixedIt( fixedImage, fixedImage->GetBufferedRegion() );
  for ( fixedIt.GoToBegin(); !fixedIt.IsAtEnd(); ++fixedIt )
    {
    UCharImage2DType::IndexType index = fixedIt.GetIndex();
    if ((index[0]>=48)&&(index[0]<=80)&&(index[1]>=48)&&(index[1]<=80))
      {
      fixedIt.Set(255);
      }
    }

  // Create moving image
  UCharImage2DType::Pointer movingImage = UCharImage2DType::New();
  movingImage->SetRegions(imageSize);
  movingImage->Allocate(true); // initialize
                                                      // buffer to zero
  movingImage->Update();

  UCharIteratorType movingIt( movingImage, movingImage->GetBufferedRegion() );
  for ( movingIt.GoToBegin(); !movingIt.IsAtEnd(); ++movingIt )
    {
    UCharImage2DType::IndexType index = movingIt.GetIndex();
    if ((index[0]>=55)&&(index[0]<=87)&&(index[1]>=55)&&(index[1]<=87))
      {
      movingIt.Set(255);
      }
    }

  MetricType::Pointer metric = MetricType::New();


  //------------------------------------------------------------------
  // exercise [Set,Get]ForegroundValue method
  //------------------------------------------------------------------
  std::cout << "Test [Set,Get]ForegroundValue method..." << std::endl;

  metric->SetForegroundValue(255);
  if (itk::Math::NotExactlyEquals(metric->GetForegroundValue(), 255))
    {
    std::cerr << "Error!" << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << " [ PASSED ] " << std::endl;


  //------------------------------------------------------------------
  // exercise GetValue method
  //------------------------------------------------------------------
  std::cout << "Test GetValue method..." << std::endl;
  transform->SetIdentity();

  TransformType::ParametersType parameters = transform->GetParameters();

  metric->SetFixedImage( fixedImage );
  metric->SetMovingImage( movingImage );
  metric->SetInterpolator( interpolator );
  metric->SetTransform( transform );
  metric->SetFixedImageRegion( fixedImage->GetBufferedRegion() );
  try
    {
    metric->Initialize();
    }
  catch ( itk::ExceptionObject &excp )
    {
    std::cerr << "Exception caught while initializing metric." << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  // The value 0.620753 was computed by hand for these two images
  MetricType::MeasureType value = metric->GetValue( parameters );
  if ( !( value >= 0.620753 - epsilon && value <= 0.620753 + epsilon ) )
    {
    std::cerr << "Error!" << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << " [ PASSED ] " << std::endl;


  //------------------------------------------------------------------
  // exercise ComputeGradient method
  //------------------------------------------------------------------
  std::cout << "Test ComputeGradient method..." << std::endl;
  metric->ComputeGradient();

  DoubleImage2DType::Pointer xGradImage = DoubleImage2DType::New();
  xGradImage->SetRegions(imageSize);
  xGradImage->Allocate(true); // initialize
                                                     // buffer to zero
  xGradImage->Update();

  DoubleImage2DType::Pointer yGradImage = DoubleImage2DType::New();
  yGradImage->SetRegions(imageSize);
  yGradImage->Allocate(true); // initialize
                                                     // buffer to zero
  yGradImage->Update();

  DoubleIteratorType xGradIt( xGradImage, xGradImage->GetBufferedRegion() );
  DoubleIteratorType yGradIt( yGradImage, yGradImage->GetBufferedRegion() );

  xGradIt.GoToBegin();
  yGradIt.GoToBegin();

  // Construct the gradient images explicitly based on what we know
  // they should be and use them to validate metric's version
  while ( !xGradIt.IsAtEnd() )
    {
    DoubleImage2DType::IndexType index = xGradIt.GetIndex();

    if (((index[0]==54)||(index[0]==55))&&(index[1]>=55)&&(index[1]<=87))
      {
      xGradIt.Set(1);
      }
    if (((index[0]==87)||(index[0]==88))&&(index[1]>=55)&&(index[1]<=87))
      {
      xGradIt.Set(-1);
      }
    if (((index[1]==54)||(index[1]==55))&&(index[0]>=55)&&(index[0]<=87))
      {
      yGradIt.Set(1);
      }
    if (((index[1]==87)||(index[1]==88))&&(index[0]>=55)&&(index[0]<=87))
      {
      yGradIt.Set(-1);
      }

    ++xGradIt;
    ++yGradIt;
    }

  typedef itk::ImageRegionIteratorWithIndex< const MetricType::GradientImageType >  GradIteratorType;
  GradIteratorType gradIt( metric->GetGradientImage(), metric->GetGradientImage()->GetBufferedRegion() );
  gradIt.GoToBegin();
  xGradIt.GoToBegin();
  yGradIt.GoToBegin();
  while ( !gradIt.IsAtEnd() )
    {
    if (itk::Math::NotAlmostEquals((gradIt.Get())[0], xGradIt.Get()) ||
        itk::Math::NotAlmostEquals((gradIt.Get())[1], yGradIt.Get()))
      {
      std::cerr << "Error!" << std::endl;
      return EXIT_FAILURE;
      }

    ++gradIt;
    ++xGradIt;
    ++yGradIt;
    }
  std::cout << " [ PASSED ] " << std::endl;


  //------------------------------------------------------------------
  // exercise GetDerivative method
  //------------------------------------------------------------------
  std::cout << "Test GetDerivative method..." << std::endl;
  MetricType::DerivativeType derivative;
  metric->GetDerivative( parameters, derivative );

  // The value 0.0477502 was computed by hand
  if (!((derivative[0]>=-0.0477502-epsilon)&&(derivative[0]<=-0.0477502+epsilon)))
    {
    std::cerr << "Error!" << std::endl;
    return EXIT_FAILURE;
    }
  if (!((derivative[1]>=-0.0477502-epsilon)&&(derivative[1]<=-0.0477502+epsilon)))
    {
    std::cerr << "Error!" << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << " [ PASSED ] " << std::endl;

  //------------------------------------------------------------------
  // exercise GetValueAndDerivative method
  //------------------------------------------------------------------
  std::cout << "Test GetValueAndDerivative method..." << std::endl;
  metric->GetValueAndDerivative( parameters, value, derivative );

  if ( !( value >= 0.620753 - epsilon && value <= 0.620753 + epsilon ) )
    {
    std::cerr << "Error!" << std::endl;
    return EXIT_FAILURE;
    }
  // The value 0.0477502 was computed by hand
  if ( !( (derivative[0]>=-0.0477502-epsilon) && (derivative[0]<=-0.0477502+epsilon) ) )
    {
    std::cerr << "Error!" << std::endl;
    return EXIT_FAILURE;
    }
  if ( !( (derivative[1]>=-0.0477502-epsilon) && (derivative[1]<=-0.0477502+epsilon) ) )
    {
    std::cerr << "Error!" << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << " [ PASSED ] " << std::endl;

  //------------------------------------------------------------------
  // exercise Complement method
  //------------------------------------------------------------------
  std::cout << "Test Complement method..." << std::endl;
  metric->ComplementOn();

  // The value 0.379247 was computed by hand
  if (!((metric->GetValue(parameters)>=0.379247-epsilon)&&(metric->GetValue(parameters)<=0.379247+epsilon)))
    {
    std::cerr << "Error!" << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << " [ PASSED ] " << std::endl;

  //------------------------------------------------------------------
  // exercise PrintSelf method
  //------------------------------------------------------------------
  std::cout << "Test PrintSelf method..." << std::endl;
  metric->Print( std::cout );

  return EXIT_SUCCESS;
}