File: itkBayesianClassifierImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.10.1-dfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 416,780 kB
  • ctags: 104,347
  • sloc: cpp: 553,142; ansic: 142,389; fortran: 34,788; python: 16,392; lisp: 2,070; sh: 1,862; tcl: 993; java: 362; perl: 200; makefile: 111; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (225 lines) | stat: -rw-r--r-- 7,789 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageFileReader.h"
#include "itkBayesianClassifierImageFilter.h"
#include "itkBayesianClassifierInitializationImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

#include "itkPipelineMonitorImageFilter.h"

int itkBayesianClassifierImageFilterTest(int argc, char* argv[] )
{

  if( argc < 5 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " inputImageFile outputImageFile numberOfClasses smoothingIterations" << std::endl;
    return EXIT_FAILURE;
    }


  // setup reader
  const unsigned int Dimension = 2;
  typedef unsigned char                           InputPixelType;
  typedef itk::Image< InputPixelType, Dimension > InputImageType;
  typedef itk::ImageFileReader< InputImageType >  ReaderType;

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );

  typedef unsigned char  LabelType;
  typedef float          PriorType;
  typedef float          PosteriorType;

  typedef itk::BayesianClassifierInitializationImageFilter< InputImageType >
                                                BayesianInitializerType;

  BayesianInitializerType::Pointer bayesianInitializer = BayesianInitializerType::New();

  bayesianInitializer->SetInput( reader->GetOutput() );
  bayesianInitializer->SetNumberOfClasses( atoi( argv[3] ) );

  typedef BayesianInitializerType::OutputImageType  InitialLabelImageType;

  typedef itk::BayesianClassifierImageFilter<
    InitialLabelImageType, LabelType, PosteriorType, PriorType >   ClassifierFilterType;

  ClassifierFilterType::Pointer filter = ClassifierFilterType::New();

  filter->SetInput( bayesianInitializer->GetOutput() );

  //
  //  Exercise Set/GetNumberOfSmoothingIterations()
  //
  filter->SetNumberOfSmoothingIterations( 1 );
  if( filter->GetNumberOfSmoothingIterations() != 1 )
    {
    std::cerr << "Error in Set/GetNumberOfSmoothingIterations()" << std::endl;
    return EXIT_FAILURE;
    }

  filter->SetNumberOfSmoothingIterations( 19 );
  if( filter->GetNumberOfSmoothingIterations() != 19 )
    {
    std::cerr << "Error in Set/GetNumberOfSmoothingIterations()" << std::endl;
    return EXIT_FAILURE;
    }

  filter->SetNumberOfSmoothingIterations( 0 );

  filter->SetNumberOfSmoothingIterations( atoi( argv[4] ));
  typedef ClassifierFilterType::ExtractedComponentImageType ExtractedComponentImageType;
  typedef itk::GradientAnisotropicDiffusionImageFilter<
    ExtractedComponentImageType, ExtractedComponentImageType >  SmoothingFilterType;
  SmoothingFilterType::Pointer smoother = SmoothingFilterType::New();
  smoother->SetNumberOfIterations( 1 );
  smoother->SetTimeStep( 0.125 );
  smoother->SetConductanceParameter( 3 );
  filter->SetSmoothingFilter( smoother );

  //
  //  Exercise Set/GetSmoothingFilter()
  //
  if( filter->GetSmoothingFilter().GetPointer() != smoother.GetPointer() )
    {
    std::cerr << "Error in Set/GetSmoothingFilter()" << std::endl;
    return EXIT_FAILURE;
    }

  filter->SetSmoothingFilter( ITK_NULLPTR );
  if( filter->GetSmoothingFilter().GetPointer() != ITK_NULLPTR )
    {
    std::cerr << "Error in Set/GetSmoothingFilter()" << std::endl;
    return EXIT_FAILURE;
    }

  filter->SetSmoothingFilter( smoother );


  typedef itk::PipelineMonitorImageFilter<InputImageType> MonitorFilterType;
  MonitorFilterType::Pointer monitor =  MonitorFilterType::New();
  monitor->SetInput(filter->GetOutput());


  typedef ClassifierFilterType::OutputImageType      ClassifierOutputImageType;
  typedef itk::Image< unsigned char, Dimension >     OutputImageType;
  typedef itk::RescaleIntensityImageFilter<
    ClassifierOutputImageType, OutputImageType >   RescalerType;
  RescalerType::Pointer rescaler = RescalerType::New();
  rescaler->SetInput( monitor->GetOutput() );
  rescaler->SetOutputMinimum( 0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< OutputImageType >    WriterType;

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );

  writer->SetInput( rescaler->GetOutput() );

  try
    {
    filter->Update();
    writer->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }


  if (!monitor->VerifyAllInputCanNotStream())
    {
    std::cout << "pipeline did not execute as expected!" << std::endl;
    return EXIT_FAILURE;
    }

  filter->Print( std::cout );
  std::cout << "Test passed." << std::endl;

  typedef ClassifierFilterType::PriorsImageType   PriorsImageType;

  const InputImageType * inputImage = reader->GetOutput();

  PriorsImageType::Pointer priorsImage = PriorsImageType::New();
  priorsImage->CopyInformation( inputImage );
  priorsImage->SetRegions( inputImage->GetLargestPossibleRegion() );
  priorsImage->SetNumberOfComponentsPerPixel(5);
  priorsImage->Allocate();

  filter->SetPriors( priorsImage );

///TEST valid image type combinations.  I have a hypothesis that the vector element type for
//TestInitialLabelImageType must be the same as for TestPriorType
    {
    const unsigned int TestDimension = 2;
    typedef unsigned char  TestLabelType;
    typedef float          TestPosteriorType;

    typedef float                                            TestPriorType;
    typedef itk::VectorImage< TestPriorType ,TestDimension > TestInitialLabelImageType;

    typedef itk::BayesianClassifierImageFilter<
      TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType >   TestClassifierFilterType;
    TestClassifierFilterType::Pointer test=TestClassifierFilterType::New();
    if(test.IsNull())
      {
      return EXIT_FAILURE;
      }
    }

    {
    const unsigned int TestDimension = 2;
    typedef unsigned char  TestLabelType;
    typedef float          TestPosteriorType;

    typedef float          TestPriorType;
    typedef itk::VectorImage< double ,TestDimension > TestInitialLabelImageType; //The element type MUST be the PriorType

    typedef itk::BayesianClassifierImageFilter<
      TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType >   TestClassifierFilterType;
    TestClassifierFilterType::Pointer test=TestClassifierFilterType::New();
    if(test.IsNull())
      {
      return EXIT_FAILURE;
      }
    }

    {
    const unsigned int TestDimension = 2;
    typedef unsigned char  TestLabelType;
    typedef float          TestPosteriorType;

    typedef double          TestPriorType;
    typedef itk::VectorImage< TestPriorType ,TestDimension > TestInitialLabelImageType; //The element type MUST be the PriorType

    typedef itk::BayesianClassifierImageFilter<
      TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType >   TestClassifierFilterType;
    TestClassifierFilterType::Pointer test=TestClassifierFilterType::New();
    if(test.IsNull())
      {
      return EXIT_FAILURE;
      }
    }
  return EXIT_SUCCESS;
}