1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkBayesianClassifierImageFilter.h"
#include "itkBayesianClassifierInitializationImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkPipelineMonitorImageFilter.h"
int itkBayesianClassifierImageFilterTest(int argc, char* argv[] )
{
if( argc < 5 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile numberOfClasses smoothingIterations" << std::endl;
return EXIT_FAILURE;
}
// setup reader
const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
typedef unsigned char LabelType;
typedef float PriorType;
typedef float PosteriorType;
typedef itk::BayesianClassifierInitializationImageFilter< InputImageType >
BayesianInitializerType;
BayesianInitializerType::Pointer bayesianInitializer = BayesianInitializerType::New();
bayesianInitializer->SetInput( reader->GetOutput() );
bayesianInitializer->SetNumberOfClasses( atoi( argv[3] ) );
typedef BayesianInitializerType::OutputImageType InitialLabelImageType;
typedef itk::BayesianClassifierImageFilter<
InitialLabelImageType, LabelType, PosteriorType, PriorType > ClassifierFilterType;
ClassifierFilterType::Pointer filter = ClassifierFilterType::New();
filter->SetInput( bayesianInitializer->GetOutput() );
//
// Exercise Set/GetNumberOfSmoothingIterations()
//
filter->SetNumberOfSmoothingIterations( 1 );
if( filter->GetNumberOfSmoothingIterations() != 1 )
{
std::cerr << "Error in Set/GetNumberOfSmoothingIterations()" << std::endl;
return EXIT_FAILURE;
}
filter->SetNumberOfSmoothingIterations( 19 );
if( filter->GetNumberOfSmoothingIterations() != 19 )
{
std::cerr << "Error in Set/GetNumberOfSmoothingIterations()" << std::endl;
return EXIT_FAILURE;
}
filter->SetNumberOfSmoothingIterations( 0 );
filter->SetNumberOfSmoothingIterations( atoi( argv[4] ));
typedef ClassifierFilterType::ExtractedComponentImageType ExtractedComponentImageType;
typedef itk::GradientAnisotropicDiffusionImageFilter<
ExtractedComponentImageType, ExtractedComponentImageType > SmoothingFilterType;
SmoothingFilterType::Pointer smoother = SmoothingFilterType::New();
smoother->SetNumberOfIterations( 1 );
smoother->SetTimeStep( 0.125 );
smoother->SetConductanceParameter( 3 );
filter->SetSmoothingFilter( smoother );
//
// Exercise Set/GetSmoothingFilter()
//
if( filter->GetSmoothingFilter().GetPointer() != smoother.GetPointer() )
{
std::cerr << "Error in Set/GetSmoothingFilter()" << std::endl;
return EXIT_FAILURE;
}
filter->SetSmoothingFilter( ITK_NULLPTR );
if( filter->GetSmoothingFilter().GetPointer() != ITK_NULLPTR )
{
std::cerr << "Error in Set/GetSmoothingFilter()" << std::endl;
return EXIT_FAILURE;
}
filter->SetSmoothingFilter( smoother );
typedef itk::PipelineMonitorImageFilter<InputImageType> MonitorFilterType;
MonitorFilterType::Pointer monitor = MonitorFilterType::New();
monitor->SetInput(filter->GetOutput());
typedef ClassifierFilterType::OutputImageType ClassifierOutputImageType;
typedef itk::Image< unsigned char, Dimension > OutputImageType;
typedef itk::RescaleIntensityImageFilter<
ClassifierOutputImageType, OutputImageType > RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();
rescaler->SetInput( monitor->GetOutput() );
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
writer->SetInput( rescaler->GetOutput() );
try
{
filter->Update();
writer->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Exception caught: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
if (!monitor->VerifyAllInputCanNotStream())
{
std::cout << "pipeline did not execute as expected!" << std::endl;
return EXIT_FAILURE;
}
filter->Print( std::cout );
std::cout << "Test passed." << std::endl;
typedef ClassifierFilterType::PriorsImageType PriorsImageType;
const InputImageType * inputImage = reader->GetOutput();
PriorsImageType::Pointer priorsImage = PriorsImageType::New();
priorsImage->CopyInformation( inputImage );
priorsImage->SetRegions( inputImage->GetLargestPossibleRegion() );
priorsImage->SetNumberOfComponentsPerPixel(5);
priorsImage->Allocate();
filter->SetPriors( priorsImage );
///TEST valid image type combinations. I have a hypothesis that the vector element type for
//TestInitialLabelImageType must be the same as for TestPriorType
{
const unsigned int TestDimension = 2;
typedef unsigned char TestLabelType;
typedef float TestPosteriorType;
typedef float TestPriorType;
typedef itk::VectorImage< TestPriorType ,TestDimension > TestInitialLabelImageType;
typedef itk::BayesianClassifierImageFilter<
TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType > TestClassifierFilterType;
TestClassifierFilterType::Pointer test=TestClassifierFilterType::New();
if(test.IsNull())
{
return EXIT_FAILURE;
}
}
{
const unsigned int TestDimension = 2;
typedef unsigned char TestLabelType;
typedef float TestPosteriorType;
typedef float TestPriorType;
typedef itk::VectorImage< double ,TestDimension > TestInitialLabelImageType; //The element type MUST be the PriorType
typedef itk::BayesianClassifierImageFilter<
TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType > TestClassifierFilterType;
TestClassifierFilterType::Pointer test=TestClassifierFilterType::New();
if(test.IsNull())
{
return EXIT_FAILURE;
}
}
{
const unsigned int TestDimension = 2;
typedef unsigned char TestLabelType;
typedef float TestPosteriorType;
typedef double TestPriorType;
typedef itk::VectorImage< TestPriorType ,TestDimension > TestInitialLabelImageType; //The element type MUST be the PriorType
typedef itk::BayesianClassifierImageFilter<
TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType > TestClassifierFilterType;
TestClassifierFilterType::Pointer test=TestClassifierFilterType::New();
if(test.IsNull())
{
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
|