1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <fstream>
#include "itkIsolatedConnectedImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkFilterWatcher.h"
int itkIsolatedConnectedImageFilterTest(int ac, char* av[] )
{
if(ac < 8)
{
std::cerr << "Usage: " << av[0] << " InputImage OutputImage FindUpper(true,false) seed1_x seed1_y seed2_x seed2_y [seed1_x2 seed1_y2 seed2_x2 seed2_y2]*\n";
return -1;
}
typedef unsigned char PixelType;
typedef itk::Image<PixelType, 2> myImage;
itk::ImageFileReader<myImage>::Pointer input = itk::ImageFileReader<myImage>::New();
input->SetFileName(av[1]);
// Create a filter
typedef itk::IsolatedConnectedImageFilter<myImage,myImage> FilterType;
FilterType::Pointer filter = FilterType::New();
FilterWatcher watcher(filter);
filter->SetInput(input->GetOutput());
FilterType::IndexType seed1;
#if ! defined ( ITK_FUTURE_LEGACY_REMOVE )
seed1[0] = atoi(av[4]); seed1[1] = atoi(av[5]);
filter->SetSeed1(seed1); // deprecated method
seed1[0] = atoi(av[6]); seed1[1] = atoi(av[7]);
filter->SetSeed2(seed1); // deprecated method
#endif
// Clear the seeds and then add all of the seeds
filter->ClearSeeds1();
filter->ClearSeeds2();
for (int i=4; i<ac; i+=4)
{
seed1[0] = atoi(av[i]); seed1[1] = atoi(av[i+1]);
filter->AddSeed1(seed1);
seed1[0] = atoi(av[i+2]); seed1[1] = atoi(av[i+3]);
filter->AddSeed2(seed1);
}
// The min and max values for a .png image
filter->SetLower(0);
#if ! defined ( ITK_FUTURE_LEGACY_REMOVE )
filter->SetUpperValueLimit(255); //deprecated method
#endif
filter->SetUpper(255);
filter->SetReplaceValue(255);
// Test SetMacro
filter->SetIsolatedValueTolerance(1);
// Test SetMacro
std::string findUpper = av[3];
if (findUpper == "true")
{ filter->FindUpperThresholdOn(); }
else
{ filter->FindUpperThresholdOff(); }
// Test GetMacros
PixelType lower = filter->GetLower();
std::cout << "filter->GetLower(): "
<< static_cast<itk::NumericTraits<PixelType>::PrintType>(lower)
<< std::endl;
PixelType isolatedValueTolerance = filter->GetIsolatedValueTolerance();
std::cout << "filter->GetIsolatedValueTolerance(): "
<< static_cast<itk::NumericTraits<PixelType>::PrintType>(isolatedValueTolerance)
<< std::endl;
#if ! defined ( ITK_FUTURE_LEGACY_REMOVE )
PixelType upperValueLimit = filter->GetUpperValueLimit();
std::cout << "filter->GetUpperValueLimit(): "
<< static_cast<itk::NumericTraits<PixelType>::PrintType>(upperValueLimit)
<< std::endl;
#endif
PixelType upper = filter->GetUpper();
std::cout << "filter->GetUpper(): "
<< static_cast<itk::NumericTraits<PixelType>::PrintType>(upper)
<< std::endl;
PixelType replaceValue = filter->GetReplaceValue();
std::cout << "filter->GetReplaceValue(): "
<< static_cast<itk::NumericTraits<PixelType>::PrintType>(replaceValue)
<< std::endl;
bool findUpperThreshold = filter->GetFindUpperThreshold();
std::cout << "filter->GetFindUpperThreshold(): "
<< findUpperThreshold
<< std::endl;
try
{
input->Update();
filter->Update();
}
catch (itk::ExceptionObject& e)
{
std::cerr << "Exception detected: " << e.GetDescription();
return -1;
}
bool thresholdingFailed = filter->GetThresholdingFailed();
if (thresholdingFailed)
{
std::cout << "Selection of isolating threshold failed" << std::endl;
}
else
{
std::cout << "Selection of isolating threshold succeeded" << std::endl;
}
// Generate test image
itk::ImageFileWriter<myImage>::Pointer writer;
writer = itk::ImageFileWriter<myImage>::New();
writer->SetInput( filter->GetOutput() );
writer->SetFileName( av[2] );
writer->Update();
// Now flip the mode to test whether it fails
if (findUpper == "true")
{ filter->FindUpperThresholdOff(); }
else
{ filter->FindUpperThresholdOn(); }
try
{
filter->Update();
}
catch (itk::ExceptionObject& e)
{
std::cerr << "Exception detected: " << e.GetDescription();
return -1;
}
thresholdingFailed = filter->GetThresholdingFailed();
if (thresholdingFailed)
{
std::cout << "When mode flipped: Selection of isolating threshold failed" << std::endl;
}
else
{
std::cout << "When mode flipped: Selection of isolating threshold succeeded" << std::endl;
}
return EXIT_SUCCESS;
}
|