File: TreeContainer.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (408 lines) | stat: -rw-r--r-- 12,862 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Software Guide : BeginLatex
//
// \index{itk::TreeContainer}
//
// This example demonstrates use of the \doxygen{TreeContainer} class and
// associated \code{TreeIterator}s.
// \code{TreeContainer} implements the notion of a tree, which is a branching
// data structure composed of nodes and edges, where the edges indicate
// a parent/child relationship between nodes.  Each node may have exactly one
// parent, except for the root node, which has none.  A tree must have
// exactly one root node, and a node may not be its own parent.  To round out
// the vocabulary used to discuss this data structure, two nodes
// sharing the same parent node are called ``siblings,'' a childless node
// is termed a ``leaf,'' and a ``forest'' is a collection of disjoint trees.
// Note that in the present implementation, it is the user's responsibility
// to enforce these relationships, as no checking is done to ensure a
// cycle-free tree.  \code{TreeContainer} is templated over the type of node,
// affording the user great flexibility in using the structure for their
// particular problem.
//
// Let's begin by including the appropriate header files.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
#include "itkTreeContainer.h"
#include "itkChildTreeIterator.h"
#include "itkLeafTreeIterator.h"
#include "itkLevelOrderTreeIterator.h"
#include "itkInOrderTreeIterator.h"
#include "itkPostOrderTreeIterator.h"
#include "itkRootTreeIterator.h"
#include "itkTreeIteratorClone.h"
// Software Guide : EndCodeSnippet

int main(int, char* [])
{

  // Software Guide : BeginLatex
  //
  // We first instantiate a tree with \code{int} node type.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  typedef int                          NodeType;
  typedef itk::TreeContainer<NodeType> TreeType;
  TreeType::Pointer tree = TreeType::New();
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // Next we set the value of the root node using \code{SetRoot()}.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  tree->SetRoot(0);
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // Nodes may be added to the tree using the \code{Add()} method,
  // where the first argument is the value of the new node, and the second
  // argument is the value of the parent node.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  tree->Add(1,0);
  tree->Add(2,0);
  tree->Add(3,0);
  tree->Add(4,2);
  tree->Add(5,2);
  tree->Add(6,5);
  tree->Add(7,1);
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // If two nodes have the same value, it is ambiguous which node is intended
  // to be the parent of the new node; in this case, the first node with that
  // value is selected.  As will be demonstrated shortly, this ambiguity can be avoided
  // by constructing the tree with \code{TreeIterator}s.
  //
  // Let's begin by defining a \doxygen{ChildTreeIterator}.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  itk::ChildTreeIterator<TreeType> childIt(tree);
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // Before discussing the particular features of this iterator, however, we will
  // illustrate features common to all \code{TreeIterator}s, which inherit
  // from \doxygen{TreeIteratorBase}.  Basic use follows the convention of other
  // iterators in ITK, relying on the \code{GoToBegin()} and \code{IsAtEnd()} methods.
  // The iterator is advanced using the prefix increment \code{++} operator,
  // whose behavior naturally depends on the particular iterator being used.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  for (childIt.GoToBegin(); !childIt.IsAtEnd(); ++childIt)
    {
    std::cout << childIt.Get() << std::endl;
    }
  std::cout << std::endl;
  // Software Guide : EndCodeSnippet


  childIt.GoToBegin();


  // Software Guide : BeginLatex
  //
  // Note that, though not illustrated here, trees may also be traversed using
  // the \code{GoToParent()} and \code{GoToChild()} methods.
  //
  // \code{TreeIterator}s have a number of useful functions for testing properties
  // of the current node.  For example, \code{GetType()} returns an enumerated type
  // corresponding to the type of the particular iterator being used. These types
  // are as follows:
  //
  // \code{UNDEFIND}, \code{PREORDER}, \code{INORDER}, \code{POSTORDER}, \code{LEVELORDER},
  // \code{CHILD}, \code{ROOT}, and \code{LEAF}.
  //
  // In the following snippet, we test whether the iterator is of type \code{CHILD},
  // and return from the program indicating failure if the test returns \code{false}.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  if(childIt.GetType() != itk::TreeIteratorBase<TreeType>::CHILD)
    {
    std::cerr << "Error: The iterator was not of type CHILD." << std::endl;
    return EXIT_FAILURE;
    }
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // The value associated with the node can be retrieved and modified using
  // \code{Get()} and \code{Set()} methods:
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  int oldValue = childIt.Get();
  std::cout << "The node's value is " << oldValue << std::endl;
  int newValue = 2;
  childIt.Set(newValue);
  std::cout << "Now, the node's value is " << childIt.Get() << std::endl;
  // Software Guide : EndCodeSnippet

  childIt.Set(oldValue);

  // Software Guide : BeginLatex
  //
  // A number of member functions are defined allowing the user to query
  // information about the current node's parent/child relationships:
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  std::cout << "Is this a leaf node? " << childIt.IsLeaf() << std::endl;
  std::cout << "Is this the root node? " << childIt.IsRoot() << std::endl;
  std::cout << "Does this node have a parent? " << childIt.HasParent()
            << std::endl;
  std::cout << "How many children does this node have? "
            << childIt.CountChildren() << std::endl;
  std::cout << "Does this node have a child 1? " << childIt.HasChild(1)
            << std::endl;
  // Software Guide : EndCodeSnippet

  std::cout << std::endl;

  // Software Guide : BeginLatex
  //
  // In addition to traversing the tree and querying for information, \code{TreeIterator}s
  // can alter the structure of the tree itself.  For example, a node can be added
  // using the \code{Add()} methods, child nodes can be removed using the
  // \code{RemoveChild()} method, and the current node can be removed using the
  // \code{Remove()} method.  Each of these methods returns a bool indicating whether
  // the alteration was successful.
  //
  // To illustrate this, in the following snippet we clear the tree of all nodes, and then
  // repopulate it using the iterator.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  tree->Clear();

  itk::PreOrderTreeIterator<TreeType> it(tree);

  it.GoToBegin();

  it.Add(0);
  it.Add(1);
  it.Add(2);
  it.Add(3);
  it.GoToChild(2);
  it.Add(4);
  it.Add(5);
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Every \code{TreeIterator} has a \code{Clone()} function which returns
  // a copy of the current iterator. Note that the user should delete
  // the created iterator by hand.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  itk::TreeIteratorBase<TreeType>* childItClone = childIt.Clone();
  delete childItClone;
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // Alternatively, \doxygen{TreeIteratorClone} can be used to create a generic copy of
  // an iterator.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  typedef itk::TreeIteratorBase<TreeType>      IteratorType;
  typedef itk::TreeIteratorClone<IteratorType> IteratorCloneType;
  IteratorCloneType anotherChildItClone = childIt;
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // We now turn our attention to features of the specific \code{TreeIterator}
  // specializations.  \code{ChildTreeIterator}, for example, provides a way
  // to iterate through all the children of a node.
  //
  // Software Guide : EndLatex

  std::cout << "ChildTreeIterator:" << std::endl;

  // Software Guide : BeginCodeSnippet
  for (childIt.GoToBegin(); !childIt.IsAtEnd(); ++childIt)
    {
    std::cout << childIt.Get();
    }
  std::cout << std::endl;
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // The \doxygen{LeafTreeIterator} iterates through the leaves of the tree.
  //
  // Software Guide : EndLatex

  std::cout << "LeafTreeIterator:" << std::endl;

  // Software Guide : BeginCodeSnippet
  itk::LeafTreeIterator<TreeType> leafIt(tree);
  for (leafIt.GoToBegin(); !leafIt.IsAtEnd(); ++leafIt)
    {
    std::cout << leafIt.Get() << std::endl;
    }
  std::cout << std::endl;
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex

  // \doxygen{LevelOrderTreeIterator} takes three arguments in its constructor:
  // the tree to be traversed, the maximum depth (or `level'), and the starting node.
  // Naturally, this iterator provides a method for returning the current level.
  //
  // Software Guide : EndLatex

  std::cout << "LevelOrderTreeIterator:" << std::endl;

  // Software Guide : BeginCodeSnippet
  itk::LevelOrderTreeIterator<TreeType> levelIt(tree,10,tree->GetNode(0));
  for (levelIt.GoToBegin(); !levelIt.IsAtEnd(); ++levelIt)
    {
    std::cout << levelIt.Get()
              << " ("<< levelIt.GetLevel() << ")"
              << std::endl;
    }
  std::cout << std::endl;
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // \doxygen{InOrderTreeIterator} iterates through the tree
  // from left to right.
  //
  // Software Guide : EndLatex

  std::cout << "InOrderTreeIterator:" << std::endl;

  // Software Guide : BeginCodeSnippet
  itk::InOrderTreeIterator<TreeType> inOrderIt(tree);
  for (inOrderIt.GoToBegin(); !inOrderIt.IsAtEnd(); ++inOrderIt)
    {
    std::cout << inOrderIt.Get() << std::endl;
    }
  std::cout << std::endl;
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // \doxygen{PreOrderTreeIterator} iterates through the tree
  // from left to right but do a depth first search.
  //
  // Software Guide : EndLatex

  std::cout << "PreOrderTreeIterator:" << std::endl;

  // Software Guide : BeginCodeSnippet
  itk::PreOrderTreeIterator<TreeType> preOrderIt(tree);
  for (preOrderIt.GoToBegin(); !preOrderIt.IsAtEnd(); ++preOrderIt)
    {
    std::cout << preOrderIt.Get() << std::endl;
    }
  std::cout << std::endl;
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // The \doxygen{PostOrderTreeIterator} iterates through the tree
  // from left to right but goes from the leaves to the root in the search.
  //
  // Software Guide : EndLatex

  std::cout << "PostOrderTreeIterator:" << std::endl;

  // Software Guide : BeginCodeSnippet
  itk::PostOrderTreeIterator<TreeType> postOrderIt(tree);
  for (postOrderIt.GoToBegin(); !postOrderIt.IsAtEnd(); ++postOrderIt)
    {
    std::cout << postOrderIt.Get() << std::endl;
    }
  std::cout << std::endl;
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // The \doxygen{RootTreeIterator} goes from one node to the
  // root. The second arguments is the starting node. Here we go from the leaf
  // node (value = 6) up to the root.
  //
  // Software Guide : EndLatex

  std::cout << "RootTreeIterator:" << std::endl;

  // Software Guide : BeginCodeSnippet
  itk::RootTreeIterator<TreeType> rootIt(tree,tree->GetNode(4));
  for (rootIt.GoToBegin(); !rootIt.IsAtEnd(); ++rootIt)
    {
    std::cout << rootIt.Get() << std::endl;
    }
  std::cout << std::endl;
  // Software Guide : EndCodeSnippet

  return EXIT_SUCCESS;

}