1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// Even though \href{https://www.itk.org}{ITK} can be used to perform
// general image processing tasks, the primary purpose of the toolkit is the
// processing of medical image data. In that respect, additional
// information about the images is considered mandatory. In particular the
// information associated with the physical spacing between pixels and the
// position of the image in space with respect to some world coordinate
// system are extremely important.
//
// Image origin, voxel directions (i.e. orientation), and spacing are fundamental to many
// applications. Registration, for example, is performed in physical
// coordinates. Improperly defined spacing, direction, and origins will result in
// inconsistent results in such processes. Medical images with no spatial
// information should not be used for medical diagnosis, image analysis,
// feature extraction, assisted radiation therapy or image guided surgery. In
// other words, medical images lacking spatial information are not only
// useless but also hazardous.
//
// \begin{figure} \center
// \includegraphics[width=\textwidth]{ImageOriginAndSpacing}
// \itkcaption[ITK Image Geometrical Concepts]{Geometrical concepts associated
// with the ITK image.}
// \label{fig:ImageOriginAndSpacing}
// \end{figure}
//
// Figure \ref{fig:ImageOriginAndSpacing} illustrates the main geometrical
// concepts associated with the \doxygen{Image}.
// In this figure, circles are
// used to represent the center of pixels. The value of the pixel is assumed
// to exist as a Dirac delta function located at the pixel center. Pixel
// spacing is measured between the pixel centers and can be different along
// each dimension. The image origin is associated with the coordinates of the
// first pixel in the image.
// For this simplified example, the voxel lattice is perfectly aligned with physical
// space orientation, and the image direction is therefore an identity mapping. If the
// voxel lattice samples were rotated with respect to physical space, then the image direction
// would contain a rotation matrix.
//
// A \emph{pixel} is considered to be the
// rectangular region surrounding the pixel center holding the data
// value. This can be viewed as the Voronoi region of the image grid, as
// illustrated in the right side of the figure. Linear interpolation of
// image values is performed inside the Delaunay region whose corners
// are pixel centers.
//
// Software Guide : EndLatex
#include "itkImage.h"
// Function to simulate getting mouse click from an image
static itk::Image< unsigned short, 3 >::IndexType GetIndexFromMouseClick()
{
itk::Image< unsigned short, 3 >::IndexType LeftEyeIndex;
LeftEyeIndex[0]=60;
LeftEyeIndex[1]=127;
LeftEyeIndex[2]=93;
return LeftEyeIndex;
}
int main(int, char *[])
{
const unsigned int Dimension=3;
typedef itk::Image< unsigned short, Dimension > ImageType;
ImageType::Pointer image = ImageType::New();
const ImageType::SizeType size = {{ 200, 200, 200}}; //Size along {X,Y,Z}
const ImageType::IndexType start = {{ 0, 0, 0 }}; // First index on {X,Y,Z}
ImageType::RegionType region;
region.SetSize( size );
region.SetIndex( start );
image->SetRegions( region );
image->Allocate(true); // initialize buffer to zero
// Software Guide : BeginLatex
//
// Image spacing is represented in a \code{FixedArray}
// whose size matches the dimension of the image. In order to manually set
// the spacing of the image, an array of the corresponding type must be
// created. The elements of the array should then be initialized with the
// spacing between the centers of adjacent pixels. The following code
// illustrates the methods available in the \doxygen{Image} class for dealing
// with spacing and origin.
//
// \index{itk::Image!Spacing}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::SpacingType spacing;
// Units (e.g., mm, inches, etc.) are defined by the application.
spacing[0] = 0.33; // spacing along X
spacing[1] = 0.33; // spacing along Y
spacing[2] = 1.20; // spacing along Z
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The array can be assigned to the image using
// the \code{SetSpacing()} method.
//
// \index{itk::Image!SetSpacing()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
image->SetSpacing( spacing );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The spacing information can be retrieved from an image by using the
// \code{GetSpacing()} method. This method returns a reference to a
// \code{FixedArray}. The returned object can then be used to read the
// contents of the array. Note the use of the \code{const} keyword to indicate
// that the array will not be modified.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const ImageType::SpacingType& sp = image->GetSpacing();
std::cout << "Spacing = ";
std::cout << sp[0] << ", " << sp[1] << ", " << sp[2] << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The image origin is managed in a similar way to the spacing. A
// \code{Point} of the appropriate dimension must first be
// allocated. The coordinates of the origin can then be assigned to
// every component. These coordinates correspond to the position of
// the first pixel of the image with respect to an arbitrary
// reference system in physical space. It is the user's
// responsibility to make sure that multiple images used in the same
// application are using a consistent reference system. This is
// extremely important in image registration applications.
//
// The following code illustrates the creation and assignment of a variable
// suitable for initializing the image origin.
//
// \index{itk::Image!origin}
// \index{itk::Image!SetOrigin()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// coordinates of the center of the first pixel in N-D
ImageType::PointType newOrigin;
newOrigin.Fill(0.0);
image->SetOrigin( newOrigin );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The origin can also be retrieved from an image by using the
// \code{GetOrigin()} method. This will return a reference to a
// \code{Point}. The reference can be used to read the contents of
// the array. Note again the use of the \code{const} keyword to indicate
// that the array contents will not be modified.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const ImageType::PointType & origin = image->GetOrigin();
std::cout << "Origin = ";
std::cout << origin[0] << ", "
<< origin[1] << ", "
<< origin[2] << std::endl;
// Software Guide : EndCodeSnippet
//TODO: This example should really be written for a more complicated direction cosine. i.e.
//As the first index element increases, the 1st physical space decreases.
// Software Guide : BeginLatex
//
// The image direction matrix represents the orientation relationships between
// the image samples and physical space coordinate systems. The image direction
// matrix is an orthonormal matrix that describes the possible permutation of image index
// values and the rotational aspects that are needed to properly reconcile image index
// organization with physical space axis.
// The image directions is a $N x N$ matrix where $N$ is the dimension of the image. An
// identity image direction indicates that increasing values of the 1st, 2nd, 3rd index
// element corresponds to increasing values of the 1st, 2nd and 3rd physical space axis
// respectively, and that the voxel samples are perfectly aligned with the physical space axis.
//
// The following code illustrates the creation and assignment of a variable
// suitable for initializing the image direction with an identity.
//
// \index{itk::Image!direction}
// \index{itk::Image!SetDirection()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// coordinates of the center of the first pixel in N-D
ImageType::DirectionType direction;
direction.SetIdentity();
image->SetDirection( direction );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The direction can also be retrieved from an image by using the
// \code{GetDirection()} method. This will return a reference to a
// \code{Matrix}. The reference can be used to read the contents of
// the array. Note again the use of the \code{const} keyword to indicate
// that the matrix contents can not be modified.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const ImageType::DirectionType& direct = image->GetDirection();
std::cout << "Direction = " << std::endl;
std::cout << direct << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Once the spacing, origin, and direction of the image samples have been initialized, the image
// will correctly map pixel indices to and from physical space
// coordinates. The following code illustrates how a point in physical
// space can be mapped into an image index for the purpose of reading the
// content of the closest pixel.
//
// First, a \doxygen{Point} type must be declared. The point type is
// templated over the type used to represent coordinates and over the
// dimension of the space. In this particular case, the dimension of the
// point must match the dimension of the image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Point< double, ImageType::ImageDimension > PointType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \doxygen{Point} class, like an \doxygen{Index}, is a relatively
// small and simple object. This means that no \doxygen{SmartPointer}
// is used here and the objects are simply declared as instances,
// like any other C++ class. Once the point is declared, its
// components can be accessed using traditional array notation. In
// particular, the \code{[]} operator is available. For efficiency reasons,
// no bounds checking is performed on the index used to access a particular
// point component. It is the user's responsibility to make sure that the
// index is in the range $\{0,Dimension-1\}$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
PointType point;
point[0] = 1.45; // x coordinate
point[1] = 7.21; // y coordinate
point[2] = 9.28; // z coordinate
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The image will map the point to an index using the values of the
// current spacing and origin. An index object must be provided to
// receive the results of the mapping. The index object can be
// instantiated by using the \code{IndexType} defined in the image
// type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::IndexType pixelIndex;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{TransformPhysicalPointToIndex()} method of the image class
// will compute the pixel index closest to the point provided. The method
// checks for this index to be contained inside the current buffered pixel
// data. The method returns a boolean indicating whether the resulting
// index falls inside the buffered region or not. The output index should
// not be used when the returned value of the method is \code{false}.
//
// The following lines illustrate the point to index mapping and the
// subsequent use of the pixel index for accessing pixel data from the
// image.
//
// \index{itk::Image!TransformPhysicalPointToIndex()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const bool isInside =
image->TransformPhysicalPointToIndex( point, pixelIndex );
if ( isInside )
{
ImageType::PixelType pixelValue = image->GetPixel( pixelIndex );
pixelValue += 5;
image->SetPixel( pixelIndex, pixelValue );
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Remember that \code{GetPixel()} and \code{SetPixel()} are very
// inefficient methods for accessing pixel data. Image iterators should be
// used when massive access to pixel data is required.
//
// Software Guide : EndLatex
//
// Software Guide : BeginLatex
//
// The following example illustrates the mathematical relationships between
// image index locations and its corresponding physical point representation
// for a given Image.
//
// \index{itk::Image!PhysicalPoint}
// \index{itk::Image!Index}
//
// Let us imagine that a graphical user interface exists
// where the end user manually selects the voxel index location
// of the left eye in a volume with a mouse interface. We need to
// convert that index location to a physical location so that
// laser guided surgery can be accurately performed. The
// \code{TransformIndexToPhysicalPoint} method can be used for this.
//
// SoftwareGuide : EndLatex
// Software Guide : BeginCodeSnippet
const ImageType::IndexType LeftEyeIndex = GetIndexFromMouseClick();
ImageType::PointType LeftEyePoint;
image->TransformIndexToPhysicalPoint(LeftEyeIndex,LeftEyePoint);
// Software Guide : EndCodeSnippet
std::cout << "===========================================" << std::endl;
std::cout << "The Left Eye Location is " << LeftEyePoint << std::endl;
// Software Guide : BeginLatex
//
// For a given index $I_{3X1}$, the physical location $P_{3X1}$ is calculated
// as following:
//
// \begin{equation}
// P_{3X1} = O_{3X1} + D_{3X3} * diag( S_{3X1} )_{3x3} * I_{3X1}
// \end{equation}
// where $D$ is an orthonormal direction cosines matrix and
// $S$ is the image spacing diagonal matrix.
//
// In matlab syntax the conversions are:
//
// \begin{verbatim}
// % Non-identity Spacing and Direction
// spacing=diag( [0.9375, 0.9375, 1.5] );
// direction=[0.998189, 0.0569345, -0.0194113;
// 0.0194429, -7.38061e-08, 0.999811;
// 0.0569237, -0.998378, -0.00110704];
// point = origin + direction * spacing * LeftEyeIndex
// \end{verbatim}
//
// A corresponding mathematical expansion of the C/C++ code is:
// SoftwareGuide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Matrix<double, Dimension, Dimension> MatrixType;
MatrixType SpacingMatrix;
SpacingMatrix.Fill( 0.0F );
const ImageType::SpacingType & ImageSpacing = image->GetSpacing();
SpacingMatrix( 0,0 ) = ImageSpacing[0];
SpacingMatrix( 1,1 ) = ImageSpacing[1];
SpacingMatrix( 2,2 ) = ImageSpacing[2];
const ImageType::DirectionType & ImageDirectionCosines =
image->GetDirection();
const ImageType::PointType &ImageOrigin = image->GetOrigin();
typedef itk::Vector< double, Dimension > VectorType;
VectorType LeftEyeIndexVector;
LeftEyeIndexVector[0]= LeftEyeIndex[0];
LeftEyeIndexVector[1]= LeftEyeIndex[1];
LeftEyeIndexVector[2]= LeftEyeIndex[2];
ImageType::PointType LeftEyePointByHand =
ImageOrigin + ImageDirectionCosines * SpacingMatrix * LeftEyeIndexVector;
// Software Guide : EndCodeSnippet
std::cout << "===========================================" << std::endl;
std::cout << "Spacing:: " << std::endl << SpacingMatrix << std::endl;
std::cout << "===========================================" << std::endl;
std::cout << "DirectionCosines:: " << std::endl << ImageDirectionCosines << std::endl;
std::cout << "===========================================" << std::endl;
std::cout << "Origin:: " << std::endl << ImageOrigin << std::endl;
std::cout << "===========================================" << std::endl;
std::cout << "The Left Eye Location is " << LeftEyePointByHand << std::endl;
//
// Check if two results are identical
//
if ( (LeftEyePointByHand - LeftEyePoint).GetNorm() < 0.01F )
{
std::cout << "===========================================" << std::endl;
std::cout << "Two results are identical as expected!" << std::endl;
std::cout << "The Left Eye from TransformIndexToPhysicalPoint is " << LeftEyePoint << std::endl;
std::cout << "The Left Eye from Math is " << LeftEyePointByHand << std::endl;
}
return EXIT_SUCCESS;
}
|