File: ImageAdaptor2.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (273 lines) | stat: -rw-r--r-- 8,527 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Software Guide : BeginLatex
//
// This example illustrates how to use the \doxygen{ImageAdaptor}
// to access the individual components of an RGB image. In this case, we
// create an ImageAdaptor that will accept a RGB image as input and
// presents it as a scalar image. The pixel data
// will be taken directly from the red channel of the original image.
//
// \index{itk::ImageAdaptor!Instantiation}
// \index{itk::ImageAdaptor!Header}
//
// Software Guide : EndLatex

#include "itkImageAdaptor.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"


//  Software Guide : BeginLatex
//
//  As with the previous example, the bulk of the effort in creating the image
//  adaptor is associated with the definition of the pixel accessor class. In
//  this case, the accessor converts a RGB vector to a scalar containing the
//  red channel component. Note that in the following, we do not need to define
//  the \code{Set()} method since we only expect the adaptor to be used for
//  reading data from the image.
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
class RedChannelPixelAccessor
{
public:
  typedef itk::RGBPixel<float>   InternalType;
  typedef               float    ExternalType;

  static ExternalType Get( const InternalType & input )
    {
    return static_cast<ExternalType>( input.GetRed() );
    }
};
// Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  The \code{Get()} method simply calls the \code{GetRed()} method
//  defined in the \doxygen{RGBPixel} class.
//
//  Software Guide : EndLatex


//-------------------------
//
//   Main code
//
//-------------------------

int main( int argc, char *argv[] )
{
  if( argc < 3 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << "ImageAdaptor2   inputRGBFileName outputRedChannelFileName" << std::endl;
    return EXIT_FAILURE;
    }


  //  Software Guide : BeginLatex
  //
  //  Now we use the internal pixel type of the pixel accessor to define the
  //  input image type, and then proceed to instantiate the ImageAdaptor type.
  //
  //  \index{PixelAccessor!RGB red channel}
  //  \index{itk::ImageAdaptor!RGB red channel}
  //  \index{ImageAdaptor!RGB red channel}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  typedef RedChannelPixelAccessor::InternalType  InputPixelType;
  const   unsigned int   Dimension = 2;
  typedef itk::Image< InputPixelType, Dimension >   ImageType;

  typedef itk::ImageAdaptor<  ImageType,
                              RedChannelPixelAccessor > ImageAdaptorType;

  ImageAdaptorType::Pointer adaptor = ImageAdaptorType::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  We create an image reader and connect the output to the adaptor
  //  as before.
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  typedef itk::ImageFileReader< ImageType >   ReaderType;
  ReaderType::Pointer reader = ReaderType::New();
  // Software Guide : EndCodeSnippet

  reader->SetFileName( argv[1] );
  reader->Update();

  // Software Guide : BeginCodeSnippet
  adaptor->SetImage( reader->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  We create an \doxygen{RescaleIntensityImageFilter} and an
  //  \doxygen{ImageFileWriter} to rescale the dynamic range of the pixel values
  //  and send the extracted channel to an image file. Note that the image type
  //  used for the rescaling filter is the \code{ImageAdaptorType} itself. That
  //  is, the adaptor type is used in the same context as an image type.
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  typedef itk::Image< unsigned char, Dimension >   OutputImageType;
  typedef itk::RescaleIntensityImageFilter< ImageAdaptorType,
                                            OutputImageType
                                               >   RescalerType;

  RescalerType::Pointer rescaler = RescalerType::New();
  typedef itk::ImageFileWriter< OutputImageType >   WriterType;
  WriterType::Pointer writer = WriterType::New();
  // Software Guide : EndCodeSnippet


  writer->SetFileName( argv[2] );


  //  Software Guide : BeginLatex
  //
  //  Now we connect the adaptor as the input to the rescaler and set the
  //  parameters for the intensity rescaling.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  rescaler->SetOutputMinimum(  0  );
  rescaler->SetOutputMaximum( 255 );

  rescaler->SetInput( adaptor );
  writer->SetInput( rescaler->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Finally, we invoke the \code{Update()} method on the writer and take
  //  precautions to catch any exception that may be thrown during
  //  the execution of the pipeline.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught " << excp << std::endl;
    return EXIT_FAILURE;
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  ImageAdaptors for the green and blue channels can easily be implemented by
  //  modifying the pixel accessor of the red channel and then using the
  //  new pixel accessor for instantiating the type of an image adaptor.
  //  The following define a green channel pixel accessor.
  //
  //  \index{PixelAccessor!RGB green channel}
  //  \index{itk::ImageAdaptor!RGB green channel}
  //  \index{ImageAdaptor!RGB green channel}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  class GreenChannelPixelAccessor
  {
  public:
    typedef itk::RGBPixel<float>   InternalType;
    typedef               float    ExternalType;

    static ExternalType Get( const InternalType & input )
      {
      return static_cast<ExternalType>( input.GetGreen() );
      }
    };
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  // A blue channel pixel accessor is similarly defined.
  //
  //  \index{PixelAccessor!RGB blue channel}
  //  \index{itk::ImageAdaptor!RGB blue channel}
  //  \index{ImageAdaptor!RGB blue channel}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  class BlueChannelPixelAccessor
    {
  public:
    typedef itk::RGBPixel<float>   InternalType;
    typedef               float    ExternalType;

    static ExternalType Get( const InternalType & input )
      {
      return static_cast<ExternalType>( input.GetBlue() );
      }
    };
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  // \begin{figure} \center
  // \includegraphics[width=0.24\textwidth]{VisibleWomanEyeSlice}
  // \includegraphics[width=0.24\textwidth]{VisibleWomanEyeSliceRedComponent}
  // \includegraphics[width=0.24\textwidth]{VisibleWomanEyeSliceGreenComponent}
  // \includegraphics[width=0.24\textwidth]{VisibleWomanEyeSliceBlueComponent}
  // \itkcaption[Image Adaptor to RGB Image]{Using
  // ImageAdaptor to extract the components of an RGB image. The
  // image on the left is a subregion of the Visible Woman cryogenic data set.
  // The red, green and blue components are shown from left to right as scalar
  // images extracted with an ImageAdaptor.}
  // \label{fig:ImageAdaptorToRGBImage}
  // \end{figure}
  //
  //
  //  Figure~\ref{fig:ImageAdaptorToRGBImage} shows the result
  //  of extracting the red, green and blue components from a region of the
  //  Visible Woman cryogenic data set.
  //
  //  Software Guide : EndLatex

  return EXIT_SUCCESS;
}