File: ImageAdaptor3.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (249 lines) | stat: -rw-r--r-- 8,120 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Software Guide : BeginLatex
//
// This example illustrates the use of \doxygen{ImageAdaptor}
// to obtain access to the components of a vector image.
// Specifically, it shows how to manage pixel accessors containing
// internal parameters. In this example we create an image of vectors by using
// a gradient filter. Then, we use an image adaptor to extract one of the
// components of the vector image. The vector type used by the gradient filter
// is the \doxygen{CovariantVector} class.
//
// We start by including the relevant headers.
//
// \index{itk::ImageAdaptor!Instantiation}
// \index{itk::ImageAdaptor!Header}
// \index{itk::PixelAccessor!with parameters}
//
// Software Guide : EndLatex

#include "itkImageAdaptor.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"


// Software Guide : BeginCodeSnippet
#include "itkGradientRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  A pixel accessors class may have internal parameters that affect the
//  operations performed on input pixel data. Image adaptors support
//  parameters in their internal pixel accessor by using
//  the assignment operator. Any pixel accessor which has internal
//  parameters must therefore implement the assignment operator.
//  The following defines a pixel accessor for extracting
//  components from a vector pixel. The
//  \code{m\_Index} member variable is used to select the vector component
//  to be returned.
//
//  Software Guide : EndLatex

namespace itk
{
// Software Guide : BeginCodeSnippet
class VectorPixelAccessor
{
public:
  typedef itk::CovariantVector<float,2>   InternalType;
  typedef                      float      ExternalType;

  VectorPixelAccessor() : m_Index(0) {}

  VectorPixelAccessor & operator=( const VectorPixelAccessor & vpa )
    {
      m_Index = vpa.m_Index;
      return *this;
    }
  ExternalType Get( const InternalType & input ) const
    {
    return static_cast<ExternalType>( input[ m_Index ] );
    }
  void SetIndex( unsigned int index )
    {
    m_Index = index;
    }

private:
  unsigned int m_Index;
};
// Software Guide : EndCodeSnippet
}

//  Software Guide : BeginLatex
//
//  The \code{Get()} method simply returns the \emph{i}-th component of
//  the vector as indicated by the index. The assignment operator transfers the
//  value of the index member variable from one instance of the pixel accessor
//  to another.
//
//  Software Guide : EndLatex


//-------------------------
//
//   Main code
//
//-------------------------

int main( int argc, char *argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << "ImageAdaptor3   inputFileName outputComponentFileName ";
    std::cerr << " indexOfComponentToExtract" << std::endl;
    return EXIT_FAILURE;
    }


//  Software Guide : BeginLatex
//
//  In order to test the pixel accessor, we generate an image of vectors using
//  the \doxygen{GradientRecursiveGaussianImageFilter}. This
//  filter produces an output image of \doxygen{CovariantVector} pixel type.
//  Covariant vectors are the natural representation for gradients since they
//  are the equivalent of normals to iso-values manifolds.
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  typedef unsigned char  InputPixelType;
  const   unsigned int   Dimension = 2;
  typedef itk::Image< InputPixelType,  Dimension  >   InputImageType;
  typedef itk::CovariantVector< float, Dimension  >   VectorPixelType;
  typedef itk::Image< VectorPixelType, Dimension  >   VectorImageType;
  typedef itk::GradientRecursiveGaussianImageFilter< InputImageType,
                                        VectorImageType> GradientFilterType;

  GradientFilterType::Pointer gradient = GradientFilterType::New();
// Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  We instantiate the ImageAdaptor using the vector image type as
//  the first template parameter and the pixel accessor as the second
//  template parameter.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::ImageAdaptor<  VectorImageType,
                              itk::VectorPixelAccessor > ImageAdaptorType;

  ImageAdaptorType::Pointer adaptor = ImageAdaptorType::New();
// Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  The index of the component to be extracted is specified
//  from the command line. In the following, we create the accessor,
//  set the index and connect the accessor to the image adaptor using
//  the \code{SetPixelAccessor()} method.
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  itk::VectorPixelAccessor  accessor;
  accessor.SetIndex( atoi( argv[3] ) );
  adaptor->SetPixelAccessor( accessor );
// Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  We create a reader to load the image specified from the
//  command line and pass its output as the input to the gradient filter.
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  typedef itk::ImageFileReader< InputImageType >   ReaderType;
  ReaderType::Pointer reader = ReaderType::New();
  gradient->SetInput( reader->GetOutput() );

  reader->SetFileName( argv[1] );
  gradient->Update();
//  Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  We now connect the output of the gradient filter as input to the
//  image adaptor.  The adaptor emulates a  scalar image whose pixel values
//  are taken from the selected component of the vector image.
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  adaptor->SetImage( gradient->GetOutput() );
// Software Guide : EndCodeSnippet


  typedef itk::Image< unsigned char, Dimension >   OutputImageType;
  typedef itk::RescaleIntensityImageFilter< ImageAdaptorType, OutputImageType>
    RescalerType;
  RescalerType::Pointer rescaler = RescalerType::New();
  typedef itk::ImageFileWriter< OutputImageType >   WriterType;
  WriterType::Pointer writer = WriterType::New();

  writer->SetFileName( argv[2] );

  rescaler->SetOutputMinimum(  0  );
  rescaler->SetOutputMaximum( 255 );

  rescaler->SetInput( adaptor );
  writer->SetInput( rescaler->GetOutput() );
  writer->Update();


  //  Software Guide : BeginLatex
  //
  // \begin{figure} \center
  // \includegraphics[width=0.32\textwidth]{BrainProtonDensitySlice}
  // \includegraphics[width=0.32\textwidth]{ImageAdaptorToVectorImageComponentX}
  // \includegraphics[width=0.32\textwidth]{ImageAdaptorToVectorImageComponentY}
  // \itkcaption[Image Adaptor to Vector Image]{Using
  // ImageAdaptor to access components of a vector
  // image. The input image on the left was passed through a gradient image
  // filter and the two components of the resulting vector image were extracted
  // using an image adaptor.}
  // \label{fig:ImageAdaptorToVectorImage}
  // \end{figure}
  //
  //  As in the previous example, we rescale the scalar image before writing
  //  the image out to file. Figure~\ref{fig:ImageAdaptorToVectorImage}
  //  shows the result of applying the example code for extracting both
  //  components of a two dimensional gradient.
  //
  //  Software Guide : EndLatex

  return EXIT_SUCCESS;
}