1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ImageAdaptorThresholdingA.png}
// ARGUMENTS: 180
// Software Guide : EndCommandLineArgs
//
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ImageAdaptorThresholdingB.png}
// ARGUMENTS: 220
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// Image adaptors can also be used to perform simple pixel-wise computations
// on image data. The following example illustrates how to use the
// \doxygen{ImageAdaptor} for image thresholding.
//
// \index{itk::ImageAdaptor!Instantiation}
// \index{itk::ImageAdaptor!Header}
// \index{itk::ImageAdaptor!performing computation}
// \index{itk::PixelAccessor!with parameters}
// \index{itk::PixelAccessor!performing computation}
//
// Software Guide : EndLatex
#include "itkImageAdaptor.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// A pixel accessor for image thresholding requires that the accessor
// maintain the threshold value. Therefore, it must also implement the
// assignment operator to set this internal parameter.
//
// Software Guide : EndLatex
namespace itk
{
// Software Guide : BeginCodeSnippet
class ThresholdingPixelAccessor
{
public:
typedef unsigned char InternalType;
typedef unsigned char ExternalType;
ThresholdingPixelAccessor() : m_Threshold(0) {};
ExternalType Get( const InternalType & input ) const
{
return (input > m_Threshold) ? 1 : 0;
}
void SetThreshold( const InternalType threshold )
{
m_Threshold = threshold;
}
ThresholdingPixelAccessor &
operator=( const ThresholdingPixelAccessor & vpa )
{
m_Threshold = vpa.m_Threshold;
return *this;
}
private:
InternalType m_Threshold;
};
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{Get()} method returns one if the input pixel is above
// the threshold and zero otherwise. The assignment operator transfers
// the value of the threshold member
// variable from one instance of the pixel accessor to another.
//
// Software Guide : EndLatex
//-------------------------
//
// Main code
//
//-------------------------
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << "ImageAdaptor4 inputFileName outputBinaryFileName ";
std::cerr << " thresholdValue" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// To create an image adaptor, we first instantiate an image type
// whose pixel type is the same as the internal pixel type of the pixel
// accessor.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ThresholdingPixelAccessor::InternalType PixelType;
const unsigned int Dimension = 2;
typedef itk::Image< PixelType, Dimension > ImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate the ImageAdaptor using the image type as the
// first template parameter and the pixel accessor as the second template
// parameter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageAdaptor< ImageType,
itk::ThresholdingPixelAccessor > ImageAdaptorType;
ImageAdaptorType::Pointer adaptor = ImageAdaptorType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The threshold value is set from the command line. A threshold
// pixel accessor is created and connected to the image adaptor
// in the same manner as in the previous example.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
itk::ThresholdingPixelAccessor accessor;
accessor.SetThreshold( atoi( argv[3] ) );
adaptor->SetPixelAccessor( accessor );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create a reader to load the input image and connect the output
// of the reader as the input to the adaptor.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
reader->Update();
adaptor->SetImage( reader->GetOutput() );
// Software Guide : EndCodeSnippet
typedef itk::RescaleIntensityImageFilter< ImageAdaptorType,
ImageType > RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();
typedef itk::ImageFileWriter< ImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
rescaler->SetInput( adaptor );
writer->SetInput( rescaler->GetOutput() );
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.32\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.32\textwidth]{ImageAdaptorThresholdingA}
// \includegraphics[width=0.32\textwidth]{ImageAdaptorThresholdingB}
// \itkcaption[Image Adaptor for performing computations]{Using
// ImageAdaptor to perform a simple image computation. An
// ImageAdaptor is used to perform binary thresholding on
// the input image on the left. The center image was created using a
// threshold of 180, while the
// image on the right corresponds to a threshold of 220.}
// \label{fig:ImageAdaptorThresholding}
// \end{figure}
//
// As before, we rescale the emulated scalar image before writing it
// out to file.
// Figure~\ref{fig:ImageAdaptorThresholding} illustrates the result of
// applying the thresholding adaptor to a typical gray scale image using two
// different threshold values. Note that the same effect could have been
// achieved by using the \doxygen{BinaryThresholdImageFilter} but at the
// price of holding an extra copy of the image in memory.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|