1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// A \doxygen{Mesh} can contain a variety of cell types. Typical cells are
// the \doxygen{LineCell}, \doxygen{TriangleCell}, \doxygen{QuadrilateralCell},
// \doxygen{TetrahedronCell}, and \doxygen{PolygonCell}. Additional
// flexibility is provided for managing cells at the price of a bit more of
// complexity than in the case of point management.
//
// The following code creates a polygonal line in order to illustrate the
// simplest case of cell management in a mesh. The only cell type used here is
// the \code{LineCell}. The header file of this class must be included.
//
// \index{itk::LineCell!Header}
//
// Software Guide : EndLatex
#include "itkMesh.h"
// Software Guide : BeginCodeSnippet
#include "itkLineCell.h"
// Software Guide : EndCodeSnippet
int main(int, char *[])
{
typedef float PixelType;
typedef itk::Mesh< PixelType, 3 > MeshType;
// Software Guide : BeginLatex
//
// For consistency with \code{Mesh}, cell types have to be configured
// with a number of custom types taken from the mesh traits. The set of
// traits relevant to cells are packaged by the Mesh class into the
// \code{CellType} trait. This trait needs to be passed to the actual cell
// types at the moment of their instantiation. The following line shows how
// to extract the Cell traits from the Mesh type.
//
// \index{itk::Mesh!CellType}
// \index{itk::Mesh!traits}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef MeshType::CellType CellType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{LineCell} type can now be instantiated using the traits
// taken from the Mesh.
//
// \index{itk::LineCell!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::LineCell< CellType > LineType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The main difference in the way cells and points are managed by
// the Mesh is that points are stored by copy on the
// \code{PointsContainer} while cells are stored as pointers in the
// \code{CellsContainer}. The reason for using pointers is that cells
// use C++ polymorphism on the mesh. This means that the mesh is only
// aware of having pointers to a generic cell which is the base
// class of all the specific cell types. This architecture makes it
// possible to combine different cell types in the same
// mesh. Points, on the other hand, are of a single type and have a
// small memory footprint, which makes it efficient to copy them
// directly into the container.
//
// \index{itk::Cell!CellAutoPointer}
// \index{itk::Mesh!CellAutoPointer}
// \index{CellAutoPointer}
// \index{itk::AutoPointer}
//
// Managing cells by pointers adds another level of complexity to the Mesh
// since it is now necessary to establish a protocol to make clear who is
// responsible for allocating and releasing the cells' memory. This protocol
// is implemented in the form of a specific type of pointer called the
// \code{CellAutoPointer}. This pointer, based on the \doxygen{AutoPointer},
// differs in many respects from the \code{SmartPointer}. The \code{CellAutoPointer}
// has an internal pointer to the actual object and a boolean flag that indicates
// whether the \code{CellAutoPointer} is responsible for releasing the cell memory
// when the time comes for its own destruction. It is said that a
// \code{CellAutoPointer} \emph{owns} the cell when it is responsible for
// its destruction. At any given time many \code{CellAutoPointer}s can point to
// the same cell, but only \textbf{one} \code{CellAutoPointer} can own the cell.
//
// The \code{CellAutoPointer} trait is defined in the \code{MeshType} and can be
// extracted as follows.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef CellType::CellAutoPointer CellAutoPointer;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the \code{CellAutoPointer} points to a generic cell type. It is
// not aware of the actual type of the cell, which could be (for example) a
// \code{LineCell}, \code{TriangleCell} or \code{TetrahedronCell}. This fact
// will influence the way in which we access cells later on.
//
// At this point we can actually create a mesh and insert some points on it.
//
// \index{itk::Mesh!New()}
// \index{itk::Mesh!SetPoint()}
// \index{itk::Mesh!PointType}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MeshType::Pointer mesh = MeshType::New();
MeshType::PointType p0;
MeshType::PointType p1;
MeshType::PointType p2;
p0[0] = -1.0; p0[1] = 0.0; p0[2] = 0.0;
p1[0] = 1.0; p1[1] = 0.0; p1[2] = 0.0;
p2[0] = 1.0; p2[1] = 1.0; p2[2] = 0.0;
mesh->SetPoint( 0, p0 );
mesh->SetPoint( 1, p1 );
mesh->SetPoint( 2, p2 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following code creates two \code{CellAutoPointers} and initializes
// them with newly created cell objects. The actual cell type
// created in this case is \code{LineType}. Note that cells are
// created with the normal \code{new} C++ operator. The
// CellAutoPointer takes ownership of the received pointer by using
// the method \code{TakeOwnership()}. Even though this may seem
// verbose, it is necessary in order to make it explicit
// that the responsibility of memory release is assumed by the
// \code{AutoPointer}.
//
// \index{itk::AutoPointer!TakeOwnership()}
// \index{CellAutoPointer!TakeOwnership()}
// \index{CellType!creation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CellAutoPointer line0;
CellAutoPointer line1;
line0.TakeOwnership( new LineType );
line1.TakeOwnership( new LineType );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The LineCells should now be associated with points in the mesh. This is
// done using the identifiers assigned to points when they were inserted
// in the mesh. Every cell type has a specific number of points that must
// be associated with it.\footnote{Some cell types like polygons have a
// variable number of points associated with them.} For example, a
// \code{LineCell} requires two points, a \code{TriangleCell}
// requires three, and a \code{TetrahedronCell} requires four. Cells use
// an internal numbering system for points. It is simply an index in the
// range $\{0,NumberOfPoints-1\}$. The association of points and cells is
// done by the \code{SetPointId()} method, which requires the user to
// provide the internal index of the point in the cell and the
// corresponding \code{PointIdentifier} in the \code{Mesh}. The internal
// cell index is the first parameter of \code{SetPointId()} while the mesh
// point-identifier is the second.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
line0->SetPointId( 0, 0 ); // line between points 0 and 1
line0->SetPointId( 1, 1 );
line1->SetPointId( 0, 1 ); // line between points 1 and 2
line1->SetPointId( 1, 2 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Cells are inserted in the mesh using the \code{SetCell()} method. It
// requires an identifier and the AutoPointer to the cell. The Mesh will
// take ownership of the cell to which the \code{CellAutoPointer} is
// pointing. This is done internally by the \code{SetCell()} method. In
// this way, the destruction of the \code{CellAutoPointer} will not
// induce the destruction of the associated cell.
//
// \index{itk::Mesh!SetCell()}
// \index{SetCell()!itk::Mesh}
// \index{itk::Mesh!Inserting cells}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mesh->SetCell( 0, line0 );
mesh->SetCell( 1, line1 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// After serving as an argument of the \code{SetCell()} method, a
// \code{CellAutoPointer} no longer holds ownership of the cell. It is
// important not to use this same \code{CellAutoPointer} again as
// argument to \code{SetCell()} without first securing ownership of
// another cell.
//
// Software Guide : EndLatex
std::cout << "Points = " << mesh->GetNumberOfPoints() << std::endl;
// Software Guide : BeginLatex
//
// The number of Cells currently inserted in the mesh can be queried with
// the \code{GetNumberOfCells()} method.
//
// \index{itk::Mesh!GetNumberOfCells()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << "Cells = " << mesh->GetNumberOfCells() << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In a way analogous to points, cells can be accessed using Iterators to
// the \code{CellsContainer} in the mesh. The trait for the cell iterator
// can be extracted from the mesh and used to define a local type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef MeshType::CellsContainer::Iterator CellIterator;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then the iterators to the first and past-end cell in the mesh can be
// obtained respectively with the \code{Begin()} and \code{End()}
// methods of the \code{CellsContainer}. The \code{CellsContainer} of
// the mesh is returned by the \code{GetCells()} method.
//
// \index{itk::Mesh!Iterating cells}
// \index{itk::Mesh!GetCells()}
// \index{CellsContainer!Begin()}
// \index{CellsContainer!End()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CellIterator cellIterator = mesh->GetCells()->Begin();
CellIterator end = mesh->GetCells()->End();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, a standard loop is used to iterate over all the cells. Note the
// use of the \code{Value()} method used to get the actual pointer to the
// cell from the CellIterator. Note also that the value returned is
// a pointer to the generic CellType. This pointer must be downcast
// in order to be used as actual LineCell types. Safe down-casting is
// performed with the \code{dynamic\_cast} operator, which will throw an
// exception if the conversion cannot be safely performed.
//
// \index{down casting}
// \index{CellIterator!Value()}
// \index{CellIterator!increment}
// \index{itk::Mesh!CellType casting}
// \index{Print()}
// \index{CellType!Print()}
// \index{CellType!GetNumberOfPoints()}
// \index{LineCell!Print()}
// \index{LineCell!GetNumberOfPoints()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
while( cellIterator != end )
{
MeshType::CellType * cellptr = cellIterator.Value();
LineType * line = dynamic_cast<LineType *>( cellptr );
if(line == ITK_NULLPTR)
{
continue;
}
std::cout << line->GetNumberOfPoints() << std::endl;
++cellIterator;
}
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|