File: Mesh3.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (247 lines) | stat: -rw-r--r-- 8,451 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  Just as custom data can be associated with points in the mesh,
//  it is also possible to associate custom data with cells. The type of the
//  data associated with the cells can be different from the data type
//  associated with points. By default, however, these two types are the same.
//  The following example illustrates how to access data associated with cells.
//  The approach is analogous to the one used to access point data.
//
//  \index{itk::Mesh!Cell data}
//
//  Software Guide : EndLatex


//  Software Guide : BeginLatex
//
//  Consider the example of a mesh containing lines on which values are
//  associated with each line. The mesh and cell header files should be
//  included first.
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
#include "itkMesh.h"
#include "itkLineCell.h"
// Software Guide : EndCodeSnippet


int main(int, char *[])
{
  //  Software Guide : BeginLatex
  //
  //  Then the \code{PixelType} is defined and the mesh type is
  //  instantiated with it.
  //
  //  \index{itk::Mesh!Instantiation}
  //  \index{itk::Mesh!PixelType}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef float                             PixelType;
  typedef itk::Mesh< PixelType, 2 >         MeshType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The \doxygen{LineCell} type can now be instantiated using the traits
  //  taken from the Mesh.
  //
  //  \index{itk::LineCell!Instantiation}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef MeshType::CellType                CellType;
  typedef itk::LineCell< CellType >         LineType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Let's now create a Mesh and insert some points into it. Note that the
  //  dimension of the points matches the dimension of the Mesh. Here we insert
  //  a sequence of points that look like a plot of the $\log()$ function.  We
  //  add the \code{vnl\_math::eps} value in order to avoid numerical errors when
  //  the point id is zero. The value of \code{vnl\_math::eps} is the difference
  //  between 1.0 and the least value greater than 1.0 that is representable in
  //  this computer.
  //
  //  \index{itk::Mesh!New()}
  //  \index{itk::Mesh!SetPoint()}
  //  \index{itk::Mesh!PointType}
  //  \index{itk::Mesh!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  MeshType::Pointer  mesh = MeshType::New();

  typedef MeshType::PointType PointType;
  PointType point;

  const unsigned int numberOfPoints = 10;
  for(unsigned int id=0; id<numberOfPoints; id++)
    {
    point[0] = static_cast<PointType::ValueType>( id ); // x
    point[1] = std::log( static_cast<double>( id ) + itk::Math::eps );    // y
    mesh->SetPoint( id, point );
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  A set of line cells is created and associated with the existing points by
  //  using point identifiers. In this simple case, the point identifiers can
  //  be deduced from cell identifiers since the line cells are ordered in the
  //  same way.
  //
  //  \index{itk::AutoPointer!TakeOwnership()}
  //  \index{CellAutoPointer!TakeOwnership()}
  //  \index{CellType!creation}
  //  \index{itk::Mesh!SetCell()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  CellType::CellAutoPointer line;
  const unsigned int numberOfCells = numberOfPoints-1;
  for(unsigned int cellId=0; cellId<numberOfCells; cellId++)
    {
    line.TakeOwnership(  new LineType  );
    line->SetPointId( 0, cellId   ); // first point
    line->SetPointId( 1, cellId+1 ); // second point
    mesh->SetCell( cellId, line );   // insert the cell
    }
  // Software Guide : EndCodeSnippet


  std::cout << "Points = " << mesh->GetNumberOfPoints() << std::endl;
  std::cout << "Cells  = " << mesh->GetNumberOfCells()  << std::endl;


  //  Software Guide : BeginLatex
  //
  //  Data associated with cells is inserted in the \doxygen{Mesh} by using
  //  the \code{SetCellData()} method.  It requires the user to provide an
  //  identifier and the value to be inserted. The identifier should match one
  //  of the inserted cells. In this simple example, the square of the cell
  //  identifier is used as cell data. Note the use of \code{static\_cast} to
  //  \code{PixelType} in the assignment.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  for(unsigned int cellId=0; cellId<numberOfCells; cellId++)
    {
    mesh->SetCellData( cellId, static_cast<PixelType>( cellId * cellId ) );
    }

  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Cell data can be read from the Mesh with the
  //  \code{GetCellData()} method. It requires the user to provide the
  //  identifier of the cell for which the data is to be retrieved. The user
  //  should provide also a valid pointer to a location where the data can be
  //  copied.
  //
  //  \index{itk::Mesh!GetCellData()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  for(unsigned int cellId=0; cellId<numberOfCells; ++cellId)
    {
    PixelType value = static_cast<PixelType>(0.0);
    mesh->GetCellData( cellId, &value );
    std::cout << "Cell " << cellId << " = " << value << std::endl;
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Neither \code{SetCellData()} or \code{GetCellData()} are efficient ways
  //  to access cell data. More efficient access to cell data can be achieved
  //  by using the Iterators built into the \code{CellDataContainer}.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef MeshType::CellDataContainer::ConstIterator CellDataIterator;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Note that the \code{ConstIterator} is used here because the data is only
  //  going to be read.  This approach is exactly the same already illustrated
  //  for getting access to point data. The iterator to the first cell data
  //  item can be obtained with the \code{Begin()} method of the
  //  \code{CellDataContainer}. The past-end iterator is returned by the \code{End()}
  //  method. The cell data container itself can be obtained from the mesh with
  //  the method \code{GetCellData()}.
  //
  //  \index{itk::Mesh!Iterating cell data}
  //  \index{itk::Mesh!GetCellData()}
  //  \index{CellDataContainer!Begin()}
  //  \index{CellDataContainer!End()}
  //  \index{CellDataContainer!Iterator}
  //  \index{CellDataContainer!ConstIterator}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  CellDataIterator cellDataIterator  = mesh->GetCellData()->Begin();
  CellDataIterator end               = mesh->GetCellData()->End();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Finally, a standard loop is used to iterate over all the cell data
  //  entries. Note the use of the \code{Value()} method to get the
  //  value associated with the data entry. \code{PixelType} elements are copied into the
  //  local variable \code{cellValue}.
  //
  //  \index{CellDataIterator!Value()}
  //  \index{CellDataIterator!increment}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  while( cellDataIterator != end )
    {
    PixelType cellValue = cellDataIterator.Value();
    std::cout << cellValue << std::endl;
    ++cellDataIterator;
    }
  // Software Guide : EndCodeSnippet

  return EXIT_SUCCESS;
}