File: MeshKComplex.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (657 lines) | stat: -rw-r--r-- 23,114 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  The \doxygen{Mesh} class supports the representation of formal
//  topologies. In particular the concept of \emph{K-Complex} can be
//  correctly represented in the Mesh. An informal definition of K-Complex
//  may be as follows: a K-Complex is a topological structure in which for
//  every cell of dimension $N$, its boundary faces (which are cells of
//  dimension $N-1$) also belong to the structure.
//
//  This section illustrates how to instantiate a K-Complex structure using the
//  mesh. The example structure is composed of one tetrahedron, its
//  four triangle faces, its six line edges and its four vertices.
//
//  \index{itk::Mesh!K-Complex}
//
//  Software Guide : EndLatex


//  Software Guide : BeginLatex
//
//  The header files of all the cell types involved should be loaded along with
//  the header file of the mesh class.
//
//  \index{itk::LineCell!header}
//  \index{itk::VertexCell!header}
//  \index{itk::TriangleCell!header}
//  \index{itk::TetrahedronCell!header}
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
#include "itkMesh.h"
#include "itkLineCell.h"
#include "itkTetrahedronCell.h"
// Software Guide : EndCodeSnippet


int main(int, char *[])
{
  //  Software Guide : BeginLatex
  //
  //  Then the PixelType is defined and the mesh type is instantiated with it.
  //  Note that the dimension of the space is three in this case.
  //
  //  \index{itk::Mesh!Instantiation}
  //  \index{itk::Mesh!PixelType}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef float                             PixelType;
  typedef itk::Mesh< PixelType, 3 >         MeshType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The cell type can now be instantiated using the traits
  //  taken from the Mesh.
  //
  //  \index{itk::LineCell!Instantiation}
  //  \index{itk::VertexCell!Instantiation}
  //  \index{itk::TriangleCell!Instantiation}
  //  \index{itk::TetrahedronCell!Instantiation}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef MeshType::CellType                CellType;
  typedef itk::VertexCell< CellType >       VertexType;
  typedef itk::LineCell< CellType >         LineType;
  typedef itk::TriangleCell< CellType >     TriangleType;
  typedef itk::TetrahedronCell< CellType >  TetrahedronType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The mesh is created and the points associated with the vertices are
  //  inserted.  Note that there is an important distinction between the
  //  points in the mesh and the \doxygen{VertexCell} concept. A VertexCell
  //  is a cell of dimension zero. Its main difference as compared to a point
  //  is that the cell can be aware of neighborhood relationships with other
  //  cells. Points are not aware of the existence of cells. In fact, from
  //  the pure topological point of view, the coordinates of points in the
  //  mesh are completely irrelevant.  They may as well be absent from the
  //  mesh structure altogether.  VertexCells on the other hand are necessary
  //  to represent the full set of neighborhood relationships on the
  //  K-Complex.
  //
  //  The geometrical coordinates of the nodes of a regular tetrahedron can be
  //  obtained by taking every other node from a regular cube.
  //
  //  \index{itk::Mesh!New()}
  //  \index{itk::Mesh!SetPoint()}
  //  \index{itk::Mesh!PointType}
  //  \index{itk::Mesh!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  MeshType::Pointer  mesh = MeshType::New();

  MeshType::PointType   point0;
  MeshType::PointType   point1;
  MeshType::PointType   point2;
  MeshType::PointType   point3;

  point0[0] = -1; point0[1] = -1; point0[2] = -1;
  point1[0] =  1; point1[1] =  1; point1[2] = -1;
  point2[0] =  1; point2[1] = -1; point2[2] =  1;
  point3[0] = -1; point3[1] =  1; point3[2] =  1;

  mesh->SetPoint( 0, point0 );
  mesh->SetPoint( 1, point1 );
  mesh->SetPoint( 2, point2 );
  mesh->SetPoint( 3, point3 );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  We proceed now to create the cells, associate them with the points and
  //  insert them on the mesh. Starting with the tetrahedron we write the
  //  following code.
  //
  //  \index{itk::AutoPointer!TakeOwnership()}
  //  \index{CellAutoPointer!TakeOwnership()}
  //  \index{CellType!creation}
  //  \index{itk::Mesh!SetCell()}
  //  \index{itk::TetrahedronCell!Instantiation}
  //  \index{itk::TetrahedronCell!SetPointId()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  CellType::CellAutoPointer cellpointer;

  cellpointer.TakeOwnership( new TetrahedronType );
  cellpointer->SetPointId( 0, 0 );
  cellpointer->SetPointId( 1, 1 );
  cellpointer->SetPointId( 2, 2 );
  cellpointer->SetPointId( 3, 3 );
  mesh->SetCell( 0, cellpointer );
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Four triangular faces are created and associated with the mesh now.
  //  The first triangle connects points {0,1,2}.
  //
  //  \index{itk::TriangleCell!Instantiation}
  //  \index{itk::TriangleCell!SetPointId()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  cellpointer.TakeOwnership( new TriangleType );
  cellpointer->SetPointId( 0, 0 );
  cellpointer->SetPointId( 1, 1 );
  cellpointer->SetPointId( 2, 2 );
  mesh->SetCell( 1, cellpointer );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The second triangle connects points { 0, 2, 3 }.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cellpointer.TakeOwnership( new TriangleType );
  cellpointer->SetPointId( 0, 0 );
  cellpointer->SetPointId( 1, 2 );
  cellpointer->SetPointId( 2, 3 );
  mesh->SetCell( 2, cellpointer );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The third triangle connects points { 0, 3, 1 }.
  //
  //  Software Guide : EndLatex

   // Software Guide : BeginCodeSnippet
  cellpointer.TakeOwnership( new TriangleType );
  cellpointer->SetPointId( 0, 0 );
  cellpointer->SetPointId( 1, 3 );
  cellpointer->SetPointId( 2, 1 );
  mesh->SetCell( 3, cellpointer );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The fourth triangle connects points { 3, 2, 1 }.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cellpointer.TakeOwnership( new TriangleType );
  cellpointer->SetPointId( 0, 3 );
  cellpointer->SetPointId( 1, 2 );
  cellpointer->SetPointId( 2, 1 );
  mesh->SetCell( 4, cellpointer );
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Note how the \code{CellAutoPointer} is reused every time. Reminder: the
  //  \doxygen{AutoPointer} loses ownership of the cell when it is passed as
  //  an argument of the \code{SetCell()} method. The AutoPointer is attached
  //  to a new cell by using the \code{TakeOwnership()} method.
  //
  //  The construction of the K-Complex continues now with the creation of the
  //  six lines on the tetrahedron edges.
  //
  //  \index{itk::LineCell!Instantiation}
  //  \index{itk::LineCell!SetPointId()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cellpointer.TakeOwnership( new LineType );
  cellpointer->SetPointId( 0, 0 );
  cellpointer->SetPointId( 1, 1 );
  mesh->SetCell( 5, cellpointer );

  cellpointer.TakeOwnership( new LineType );
  cellpointer->SetPointId( 0, 1 );
  cellpointer->SetPointId( 1, 2 );
  mesh->SetCell( 6, cellpointer );

  cellpointer.TakeOwnership( new LineType );
  cellpointer->SetPointId( 0, 2 );
  cellpointer->SetPointId( 1, 0 );
  mesh->SetCell( 7, cellpointer );

  cellpointer.TakeOwnership( new LineType );
  cellpointer->SetPointId( 0, 1 );
  cellpointer->SetPointId( 1, 3 );
  mesh->SetCell( 8, cellpointer );

  cellpointer.TakeOwnership( new LineType );
  cellpointer->SetPointId( 0, 3 );
  cellpointer->SetPointId( 1, 2 );
  mesh->SetCell( 9, cellpointer );

  cellpointer.TakeOwnership( new LineType );
  cellpointer->SetPointId( 0, 3 );
  cellpointer->SetPointId( 1, 0 );
  mesh->SetCell( 10, cellpointer );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Finally the zero dimensional cells represented by the
  //  \doxygen{VertexCell} are created and inserted in the mesh.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cellpointer.TakeOwnership( new VertexType );
  cellpointer->SetPointId( 0, 0 );
  mesh->SetCell( 11, cellpointer );

  cellpointer.TakeOwnership( new VertexType );
  cellpointer->SetPointId( 0, 1 );
  mesh->SetCell( 12, cellpointer );

  cellpointer.TakeOwnership( new VertexType );
  cellpointer->SetPointId( 0, 2 );
  mesh->SetCell( 13, cellpointer );

  cellpointer.TakeOwnership( new VertexType );
  cellpointer->SetPointId( 0, 3 );
  mesh->SetCell( 14, cellpointer );
  // Software Guide : EndCodeSnippet


  // Print out the number of points and the number of cells.
  std::cout << "# Points= " << mesh->GetNumberOfPoints() << std::endl;
  std::cout << "# Cell  = " << mesh->GetNumberOfCells() << std::endl;


  //  Software Guide : BeginLatex
  //
  //  At this point the Mesh contains four points and fifteen cells enumerated
  //  from 0 to 14.  The points can be visited using PointContainer iterators.
  //
  // \index{itk::Mesh!PointsContainer}
  // \index{itk::Mesh!PointsIterators}
  // \index{itk::Mesh!GetPoints()}
  // \index{PointsContainer!Begin()}
  // \index{PointsContainer!End()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef MeshType::PointsContainer::ConstIterator  PointIterator;
  PointIterator pointIterator = mesh->GetPoints()->Begin();
  PointIterator pointEnd      = mesh->GetPoints()->End();

  while( pointIterator != pointEnd )
    {
    std::cout << pointIterator.Value() << std::endl;
    ++pointIterator;
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The cells can be visited using CellsContainer iterators.
  //
  // \index{itk::Mesh!CellsContainer}
  // \index{itk::Mesh!CellsIterators}
  // \index{itk::Mesh!GetCells()}
  // \index{CellsContainer!Begin()}
  // \index{CellsContainer!End()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef MeshType::CellsContainer::ConstIterator  CellIterator;

  CellIterator cellIterator = mesh->GetCells()->Begin();
  CellIterator cellEnd      = mesh->GetCells()->End();

  while( cellIterator != cellEnd )
    {
    CellType * cell = cellIterator.Value();
    std::cout << cell->GetNumberOfPoints() << std::endl;
    ++cellIterator;
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Note that cells are stored as pointer to a generic cell type that is the
  //  base class of all the specific cell classes. This means that at this
  //  level we can only have access to the virtual methods defined in the
  //  \code{CellType}.
  //
  //  The point identifiers to which the cells have been associated can be
  //  visited using iterators defined in the \code{CellType} trait. The
  //  following code illustrates the use of the PointIdIterators. The
  //  \code{PointIdsBegin()} method returns the iterator to the first
  //  point-identifier in the cell.  The \code{PointIdsEnd()} method returns
  //  the iterator to the past-end point-identifier in the cell.
  //
  //  \index{CellType!PointIdsBegin()}
  //  \index{CellType!PointIdsEnd()}
  //  \index{CellType!PointIdIterator}
  //  \index{PointIdIterator}
  //  \index{PointIdsBegin()}
  //  \index{PointIdsEnd()}
  //
  //  Software Guide : EndLatex

  cellIterator = mesh->GetCells()->Begin();
  cellEnd      = mesh->GetCells()->End();

  while( cellIterator != cellEnd )
    {
    CellType * cell = cellIterator.Value();

    std::cout << "cell with " << cell->GetNumberOfPoints();
    std::cout << " points   " << std::endl;

    // Software Guide : BeginCodeSnippet
    typedef CellType::PointIdIterator     PointIdIterator;

    PointIdIterator pointIditer = cell->PointIdsBegin();
    PointIdIterator pointIdend  = cell->PointIdsEnd();

    while( pointIditer != pointIdend )
      {
      std::cout << *pointIditer << std::endl;
      ++pointIditer;
      }
    // Software Guide : EndCodeSnippet

    ++cellIterator;
    }


  //  Software Guide : BeginLatex
  //
  //  Note that the point-identifier is obtained from the iterator using the
  //  more traditional \code{*iterator} notation instead the \code{Value()}
  //  notation used by cell-iterators.
  //
  //  Software Guide : EndLatex


  //  Software Guide : BeginLatex
  //
  //  Up to here, the topology of the K-Complex is not completely defined since
  //  we have only introduced the cells. ITK allows the user to define
  //  explicitly the neighborhood relationships between cells. It is clear that
  //  a clever exploration of the point identifiers could have allowed a user
  //  to figure out the neighborhood relationships. For example, two triangle
  //  cells sharing the same two point identifiers will probably be neighbor
  //  cells. Some of the drawbacks on this implicit discovery of neighborhood
  //  relationships is that it takes computing time and that some applications
  //  may not accept the same assumptions. A specific case is surgery
  //  simulation. This application typically simulates bistoury cuts
  //  in a mesh representing an organ. A small cut in the surface may be made
  //  by specifying that two triangles are not considered to be neighbors any
  //  more.
  //
  //  Neighborhood relationships are represented in the mesh by the
  //  notion of \emph{BoundaryFeature}. Every cell has an internal list of
  //  cell-identifiers pointing to other cells that are considered to be its
  //  neighbors. Boundary features are classified by dimension. For example, a
  //  line will have two boundary features of dimension zero corresponding to
  //  its two vertices. A tetrahedron will have boundary features of dimension
  //  zero, one and two, corresponding to its four vertices, six edges and four
  //  triangular faces. It is up to the user to specify the connections between
  //  the cells.
  //
  //  \index{BoundaryFeature}
  //  \index{CellBoundaryFeature}
  //  \index{itk::Mesh!BoundaryFeature}
  //
  //  Let's take in our current example the tetrahedron cell that was
  //  associated with the cell-identifier \code{0} and assign to it the four
  //  vertices as boundaries of dimension zero. This is done by invoking the
  //  \code{SetBoundaryAssignment()} method on the Mesh class.
  //
  //  \index{itk::Mesh!SetBoundaryAssignment()}
  //  \index{SetBoundaryAssignment()!itk::Mesh}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  MeshType::CellIdentifier cellId = 0;  // the tetrahedron

  int dimension = 0;                    // vertices

  MeshType::CellFeatureIdentifier featureId = 0;

  mesh->SetBoundaryAssignment( dimension, cellId, featureId++, 11 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++, 12 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++, 13 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++, 14 );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The \code{featureId} is simply a number associated with the sequence of
  //  the boundary cells of the same dimension in a specific cell. For example,
  //  the zero-dimensional features of a tetrahedron are its four vertices.
  //  Then the zero-dimensional feature-Ids for this cell will range from zero
  //  to three. The one-dimensional features of the tetrahedron are its six
  //  edges, hence its one-dimensional feature-Ids will range from zero to
  //  five. The two-dimensional features of the tetrahedron are its four
  //  triangular faces. The two-dimensional feature ids will then range from
  //  zero to three. The following table summarizes the use on indices for
  //  boundary assignments.
  //
  //  \begin{center}
  //  \begin{tabular}{ | c || c | c | c | }
  //  \hline
  //  Dimension & CellType & FeatureId range & Cell Ids \\ \hline\hline
  //  0 & VertexCell & [0:3] & \{11,12,13,14\} \\   \hline
  //  1 & LineCell & [0:5] & \{5,6,7,8,9,10\} \\   \hline
  //  2 & TriangleCell & [0:3] & \{1,2,3,4\} \\ \hline
  //  \end{tabular}
  //  \end{center}
  //
  //  In the code example above, the values of featureId range from zero to
  //  three. The cell identifiers of the triangle cells in this example are the
  //  numbers \{1,2,3,4\}, while the cell identifiers of the vertex cells are
  //  the numbers \{11,12,13,14\}.

  //
  //  Let's now assign one-dimensional boundary features of the tetrahedron.
  //  Those are the line cells with identifiers  \{5,6,7,8,9,10\}. Note that the
  //  feature identifier is reinitialized to zero since the count is
  //  independent for each dimension.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cellId    = 0;  // still the tetrahedron
  dimension = 1;  // one-dimensional features = edges
  featureId = 0;  // reinitialize the count

  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  5 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  6 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  7 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  8 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  9 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++, 10 );
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Finally we assign the two-dimensional boundary features of the
  //  tetrahedron. These are the four triangular cells with identifiers
  //  \{1,2,3,4\}. The featureId is reset to zero since feature-Ids are
  //  independent on each dimension.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cellId    = 0;  // still the tetrahedron
  dimension = 2;  // two-dimensional features = triangles
  featureId = 0;  // reinitialize the count

  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  1 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  2 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  3 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  4 );
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  At this point we can query the tetrahedron cell for information about its
  //  boundary features. For example, the number of boundary features of each
  //  dimension can be obtained with the method
  //  \code{GetNumberOfBoundaryFeatures()}.
  //
  //  \index{itk::Mesh!CellFeatureCount}
  //  \index{itk::Mesh!GetNumberOfBoundaryFeatures()}
  //  \index{GetNumberOfBoundaryFeatures()!itk::Mesh}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cellId = 0; // still the tetrahedron

  MeshType::CellFeatureCount n0;  // number of zero-dimensional features
  MeshType::CellFeatureCount n1;  // number of  one-dimensional features
  MeshType::CellFeatureCount n2;  // number of  two-dimensional features

  n0 = mesh->GetNumberOfCellBoundaryFeatures( 0, cellId );
  n1 = mesh->GetNumberOfCellBoundaryFeatures( 1, cellId );
  n2 = mesh->GetNumberOfCellBoundaryFeatures( 2, cellId );
  // Software Guide : EndCodeSnippet


  std::cout << "Number of boundary features of the cellId= " << cellId << std::endl;
  std::cout << "Dimension 0 = " << n0 << std::endl;
  std::cout << "Dimension 1 = " << n1 << std::endl;
  std::cout << "Dimension 2 = " << n2 << std::endl;


  //  Software Guide : BeginLatex
  //
  //  The boundary assignments can be recovered with the method
  //  \code{GetBoundaryAssigment()}. For example, the zero-dimensional features
  //  of the tetrahedron can be obtained with the following code.
  //
  // \index{itk::Mesh!GetBoundaryAssignment()}
  // \index{GetBoundaryAssignment()!itk::Mesh}
  //
  //  Software Guide : EndLatex

  std::cout << "Boundary features of dimension 0 " << std::endl;

  // Software Guide : BeginCodeSnippet
  dimension = 0;
  for(unsigned int b0=0; b0 < n0; b0++)
    {
    MeshType::CellIdentifier id;
    bool found = mesh->GetBoundaryAssignment( dimension, cellId, b0, &id );
    if( found ) std::cout << id << std::endl;
    }
  // Software Guide : EndCodeSnippet

  dimension = 1;
  std::cout << "Boundary features of dimension " << dimension << std::endl;
  for(unsigned int b1=0; b1 < n1; b1++)
    {
    MeshType::CellIdentifier id;
    bool found = mesh->GetBoundaryAssignment( dimension, cellId, b1, &id );
    if( found )
      {
      std::cout << id << std::endl;
      }
    }

  dimension = 2;
  std::cout << "Boundary features of dimension " << dimension << std::endl;
  for(unsigned int b2=0; b2 < n2; b2++)
    {
    MeshType::CellIdentifier id;
    bool found = mesh->GetBoundaryAssignment( dimension, cellId, b2, &id );
    if( found )
      {
      std::cout << id << std::endl;
      }
    }


  //  Software Guide : BeginLatex
  //
  //  The following code illustrates how to set the edge boundaries for one of
  //  the triangular faces.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cellId     =  2;    // one of the triangles
  dimension  =  1;    // boundary edges
  featureId  =  0;    // start the count of features

  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  7 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++,  9 );
  mesh->SetBoundaryAssignment( dimension, cellId, featureId++, 10 );
  // Software Guide : EndCodeSnippet

  std::cout << "In cell Id = " << cellId << std::endl;
  std::cout << "Boundary features of dimension " << dimension;
  n1 = mesh->GetNumberOfCellBoundaryFeatures( dimension, cellId);
  std::cout << " = " << n1 << std::endl;
  for(unsigned int b1=0; b1 < n1; b1++)
    {
    MeshType::CellIdentifier id;
    bool found = mesh->GetBoundaryAssignment( dimension, cellId, b1, &id );
    if( found )
      {
      std::cout << id << std::endl;
      }
    }

  return EXIT_SUCCESS;
}