File: PointSetWithVectors.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (198 lines) | stat: -rw-r--r-- 7,002 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  This example illustrates how a point set can be parameterized to manage a
//  particular pixel type. It is quite common to associate vector values with
//  points for producing geometric representations.  The following code shows
//  how vector values can be used as the pixel type on the PointSet class.  The
//  \doxygen{Vector} class is used here as the pixel type. This class is
//  appropriate for representing the relative position between two points. It
//  could then be used to manage displacements, for example.
//
//  \index{itk::PointSet!Vector pixels}
//
//  In order to use the vector class it is necessary to include its header file
//  along with the header of the point set.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkVector.h"
#include "itkPointSet.h"
// Software Guide : EndCodeSnippet


int main(int, char *[])
{
  //  Software Guide : BeginLatex
  //
  //  \begin{floatingfigure}[rlp]{6cm}
  //    \centering
  //    \includegraphics[width=4cm]{PointSetWithVectors}
  //    \caption[PointSet with Vectors as PixelType]{Vectors as PixelType.\label{fig:PointSetWithVectors}}
  //  \end{floatingfigure}
  //
  //  The \code{Vector} class is templated over the type used to represent
  //  the spatial coordinates and over the space dimension.  Since the
  //  PixelType is independent of the PointType, we are free to select any
  //  dimension for the vectors to be used as pixel type. However, for the
  //  sake of producing an interesting example, we will use vectors that
  //  represent displacements of the points in the PointSet. Those vectors
  //  are then selected to be of the same dimension as the PointSet.\newline
  //
  //
  //  \index{itk::Vector!itk::PointSet}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  const unsigned int Dimension = 3;
  typedef itk::Vector< float, Dimension >    PixelType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Then we use the PixelType (which are actually Vectors) to instantiate the
  //  PointSet type and subsequently create a PointSet object.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::PointSet< PixelType, Dimension > PointSetType;
  PointSetType::Pointer  pointSet = PointSetType::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The following code is generating a sphere and assigning vector values
  //  to the points. The components of the vectors in this example are
  //  computed to represent the tangents to the circle as shown in
  //  Figure~\ref{fig:PointSetWithVectors}.
  //
  //  \index{itk::PointSet!SetPoint()}
  //  \index{itk::PointSet!SetPointData()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  PointSetType::PixelType   tangent;
  PointSetType::PointType   point;

  unsigned int pointId =  0;
  const double radius = 300.0;

  for(unsigned int i=0; i<360; i++)
    {
    const double angle = i * itk::Math::pi / 180.0;
    point[0] = radius * std::sin( angle );
    point[1] = radius * std::cos( angle );
    point[2] = 1.0;   // flat on the Z plane
    tangent[0] =  std::cos(angle);
    tangent[1] = -std::sin(angle);
    tangent[2] = 0.0;  // flat on the Z plane
    pointSet->SetPoint( pointId, point );
    pointSet->SetPointData( pointId, tangent );
    pointId++;
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  We can now visit all the points and use the vector on the pixel values to
  //  apply a displacement on the points. This is along the spirit of what a
  //  deformable model could do at each one of its iterations.
  //
  //  \index{itk::PointSet!PointIterator}
  //  \index{itk::PointSet!GetPoints()}
  //  \index{itk::PointSet!GetPointData()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  typedef  PointSetType::PointDataContainer::ConstIterator PointDataIterator;
  PointDataIterator pixelIterator = pointSet->GetPointData()->Begin();
  PointDataIterator pixelEnd      = pointSet->GetPointData()->End();

  typedef  PointSetType::PointsContainer::Iterator     PointIterator;
  PointIterator pointIterator = pointSet->GetPoints()->Begin();
  PointIterator pointEnd      = pointSet->GetPoints()->End();

  while( pixelIterator != pixelEnd  && pointIterator != pointEnd )
    {
    pointIterator.Value() = pointIterator.Value() + pixelIterator.Value();
    ++pixelIterator;
    ++pointIterator;
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Note that the \code{ConstIterator} was used here instead of the normal
  //  \code{Iterator} since the pixel values are only intended to be read and
  //  not modified. ITK supports const-correctness at the API level.
  //
  //  \index{ConstIterator}
  //  \index{const-correctness}
  //
  //  Software Guide : EndLatex


  //  Software Guide : BeginLatex
  //
  //  The \doxygen{Vector} class has overloaded the \code{+} operator with
  //  the \doxygen{Point}. In other words, vectors can be added to points in
  //  order to produce new points.  This property is exploited in the center
  //  of the loop in order to update the points positions with a single
  //  statement.
  //
  //  \index{itk::PointSet!PointIterator}
  //
  //  We can finally visit all the points and print out the new values
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  pointIterator = pointSet->GetPoints()->Begin();
  pointEnd      = pointSet->GetPoints()->End();
  while( pointIterator != pointEnd )
    {
    std::cout << pointIterator.Value() << std::endl;
    ++pointIterator;
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Note that \doxygen{Vector} is not the appropriate class for
  //  representing normals to surfaces and gradients of functions. This is due
  //  to the way vectors behave under affine transforms. ITK has a
  //  specific class for representing normals and function gradients. This is
  //  the \doxygen{CovariantVector} class.
  //
  //  Software Guide : EndLatex

  return EXIT_SUCCESS;
}