File: BilateralImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (265 lines) | stat: -rw-r--r-- 9,708 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {BilateralImageFilterOutput.png}
//    ARGUMENTS:    6 5
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
//
//  The \doxygen{BilateralImageFilter} performs smoothing by using both
//  domain and range neighborhoods.  Pixels that are close to a pixel in the
//  image domain and similar to a pixel in the image range are used to
//  calculate the filtered value. Two Gaussian kernels (one in the image
//  domain and one in the image range) are used to smooth the image. The
//  result is an image that is smoothed in homogeneous regions yet has edges
//  preserved. The result is similar to anisotropic diffusion but the
//  implementation is non-iterative.  Another benefit to bilateral filtering
//  is that any distance metric can be used for kernel smoothing the image
//  range. Bilateral filtering is capable of reducing the noise in an image
//  by an order of magnitude while maintaining edges.  The bilateral operator
//  used here was described by Tomasi and Manduchi (\emph{Bilateral Filtering
//  for Gray and Color Images}. IEEE ICCV. 1998.)
//
//  The filtering operation can be described by the following equation
//
//  \begin{equation}
//  h(\mathbf{x}) = k(\mathbf{x})^{-1} \int_\omega f(\mathbf{w})
//  c(\mathbf{x},\mathbf{w}) s( f(\mathbf{x}),f(\mathbf{w})) d \mathbf{w}
//  \end{equation}
//
//  where $\mathbf{x}$ holds the coordinates of a $ND$ point, $f(\mathbf{x})$
//  is the input image and $h(\mathbf{x})$ is the output image. The
//  convolution kernels $c()$ and $s()$ are associated with the spatial and
//  intensity domain respectively. The $ND$ integral is computed over
//  $\omega$ which is a neighborhood of the pixel located at
//  $\mathbf{x}$. The normalization factor $k(\mathbf{x})$ is computed as
//
//  \begin{equation}
//  k(\mathbf{x}) = \int_\omega c(\mathbf{x},\mathbf{w})
//  s( f(\mathbf{x}),f(\mathbf{w})) d \mathbf{w}
//  \end{equation}
//
//  The default implementation of this filter uses Gaussian kernels for both
//  $c()$ and $s()$. The $c$ kernel can be described as
//
//  \begin{equation}
//  c(\mathbf{x},\mathbf{w}) = e^{(\frac{ {\left|| \mathbf{x} - \mathbf{w} \right||}^2 }{\sigma^2_c} )}
//  \end{equation}
//
//  where $\sigma_c$ is provided by the user and defines how close pixel
//  neighbors should be in order to be considered for the computation of the
//  output value.  The $s$ kernel is given by
//
//  \begin{equation}
//  s(f(\mathbf{x}),f(\mathbf{w})) = e^{(\frac{ {( f(\mathbf{x}) - f(\mathbf{w})}^2 }{\sigma^2_s} )}
//  \end{equation}
//
//  where $\sigma_s$ is provided by the user and defines how close the
//  neighbor's intensity be in order to be considered for the computation of
//  the output value.
//
//  \index{itk::BilateralImageFilter}
//
//  Software Guide : EndLatex


#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

//  Software Guide : BeginLatex
//
//  The first step required to use this filter is to include its header file.
//
//  \index{itk::BilateralImageFilter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkBilateralImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 5 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile  outputImageFile  domainSigma  rangeSigma" << std::endl;
    return EXIT_FAILURE;
    }


  //  Software Guide : BeginLatex
  //
  //  The image types are instantiated using pixel type and dimension.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef    unsigned char    InputPixelType;
  typedef    unsigned char    OutputPixelType;

  typedef itk::Image< InputPixelType,  2 >   InputImageType;
  typedef itk::Image< OutputPixelType, 2 >   OutputImageType;
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType >  ReaderType;


  //  Software Guide : BeginLatex
  //
  //  The bilateral filter type is now instantiated using both the input
  //  image and the output image types and the filter object is created.
  //
  //  \index{itk::BilateralImageFilter!instantiation}
  //  \index{itk::BilateralImageFilter!New()}
  //  \index{itk::BilateralImageFilter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::BilateralImageFilter<
               InputImageType, OutputImageType >  FilterType;
  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet


  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );


  //  Software Guide : BeginLatex
  //
  //  The input image can be obtained from the output of another
  //  filter. Here, an image reader is used as a source.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetInput( reader->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The Bilateral filter requires two parameters. First, we must specify the
  //  standard deviation $\sigma$ to be used for the Gaussian kernel on image
  //  intensities. Second, the set of $\sigma$s to be used along each dimension
  //  in the space domain. This second parameter is supplied as an array of
  //  \code{float} or \code{double} values. The array dimension matches the
  //  image dimension. This mechanism makes it possible to enforce more
  //  coherence along some directions. For example, more smoothing can be done
  //  along the $X$ direction than along the $Y$ direction.
  //
  //  In the following code example, the $\sigma$ values are taken from the
  //  command line.  Note the use of \code{ImageType::ImageDimension} to get
  //  access to the image dimension at compile time.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  const unsigned int Dimension = InputImageType::ImageDimension;
  double domainSigmas[ Dimension ];
  for(unsigned int i=0; i<Dimension; i++)
    {
    domainSigmas[i] = atof( argv[3] );
    }
  const double rangeSigma = atof( argv[4] );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The filter parameters are set with the methods \code{SetRangeSigma()}
  //  and \code{SetDomainSigma()}.
  //
  //  \index{itk::BilateralImageFilter!SetRangeSigma()}
  //  \index{itk::BilateralImageFilter!SetDomainSigma()}
  //  \index{SetDomainSigma()!itk::BilateralImageFilter}
  //  \index{SetRangeSigma()!itk::BilateralImageFilter}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  filter->SetDomainSigma( domainSigmas );
  filter->SetRangeSigma(  rangeSigma   );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The output of the filter is connected here to a intensity rescaler
  //  filter and then to a writer. Invoking \code{Update()} on the writer
  //  triggers the execution of both filters.
  //
  //  Software Guide : EndLatex

  typedef unsigned char                          WritePixelType;
  typedef itk::Image< WritePixelType, 2 >        WriteImageType;
  typedef itk::RescaleIntensityImageFilter<
               OutputImageType, WriteImageType > RescaleFilterType;
  RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
  rescaler->SetOutputMinimum(   0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< WriteImageType >  WriterType;
  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );

  // Software Guide : BeginCodeSnippet
  rescaler->SetInput( filter->GetOutput() );
  writer->SetInput( rescaler->GetOutput() );
  writer->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
  // \includegraphics[width=0.44\textwidth]{BilateralImageFilterOutput}
  // \itkcaption[BilateralImageFilter output]{Effect of the BilateralImageFilter
  // on a slice from a MRI proton density image  of the brain.}
  // \label{fig:BilateralImageFilterInputOutput}
  // \end{figure}
  //
  //  Figure \ref{fig:BilateralImageFilterInputOutput} illustrates the effect
  //  of this filter on a MRI proton density image of the brain. In this
  //  example the filter was run with a range $\sigma$ of $5.0$ and a domain
  //  $\sigma$ of $6.0$.  The figure shows how homogeneous regions are
  //  smoothed and edges are preserved.
  //
  //  \relatedClasses
  //  \begin{itemize}
  //  \item \doxygen{GradientAnisotropicDiffusionImageFilter}
  //  \item \doxygen{CurvatureAnisotropicDiffusionImageFilter}
  //  \item \doxygen{CurvatureFlowImageFilter}
  //  \end{itemize}
  //
  //  Software Guide : EndLatex

  return EXIT_SUCCESS;
}