1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {BilateralImageFilterOutput.png}
// ARGUMENTS: 6 5
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The \doxygen{BilateralImageFilter} performs smoothing by using both
// domain and range neighborhoods. Pixels that are close to a pixel in the
// image domain and similar to a pixel in the image range are used to
// calculate the filtered value. Two Gaussian kernels (one in the image
// domain and one in the image range) are used to smooth the image. The
// result is an image that is smoothed in homogeneous regions yet has edges
// preserved. The result is similar to anisotropic diffusion but the
// implementation is non-iterative. Another benefit to bilateral filtering
// is that any distance metric can be used for kernel smoothing the image
// range. Bilateral filtering is capable of reducing the noise in an image
// by an order of magnitude while maintaining edges. The bilateral operator
// used here was described by Tomasi and Manduchi (\emph{Bilateral Filtering
// for Gray and Color Images}. IEEE ICCV. 1998.)
//
// The filtering operation can be described by the following equation
//
// \begin{equation}
// h(\mathbf{x}) = k(\mathbf{x})^{-1} \int_\omega f(\mathbf{w})
// c(\mathbf{x},\mathbf{w}) s( f(\mathbf{x}),f(\mathbf{w})) d \mathbf{w}
// \end{equation}
//
// where $\mathbf{x}$ holds the coordinates of a $ND$ point, $f(\mathbf{x})$
// is the input image and $h(\mathbf{x})$ is the output image. The
// convolution kernels $c()$ and $s()$ are associated with the spatial and
// intensity domain respectively. The $ND$ integral is computed over
// $\omega$ which is a neighborhood of the pixel located at
// $\mathbf{x}$. The normalization factor $k(\mathbf{x})$ is computed as
//
// \begin{equation}
// k(\mathbf{x}) = \int_\omega c(\mathbf{x},\mathbf{w})
// s( f(\mathbf{x}),f(\mathbf{w})) d \mathbf{w}
// \end{equation}
//
// The default implementation of this filter uses Gaussian kernels for both
// $c()$ and $s()$. The $c$ kernel can be described as
//
// \begin{equation}
// c(\mathbf{x},\mathbf{w}) = e^{(\frac{ {\left|| \mathbf{x} - \mathbf{w} \right||}^2 }{\sigma^2_c} )}
// \end{equation}
//
// where $\sigma_c$ is provided by the user and defines how close pixel
// neighbors should be in order to be considered for the computation of the
// output value. The $s$ kernel is given by
//
// \begin{equation}
// s(f(\mathbf{x}),f(\mathbf{w})) = e^{(\frac{ {( f(\mathbf{x}) - f(\mathbf{w})}^2 }{\sigma^2_s} )}
// \end{equation}
//
// where $\sigma_s$ is provided by the user and defines how close the
// neighbor's intensity be in order to be considered for the computation of
// the output value.
//
// \index{itk::BilateralImageFilter}
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// The first step required to use this filter is to include its header file.
//
// \index{itk::BilateralImageFilter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkBilateralImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 5 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile domainSigma rangeSigma" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The image types are instantiated using pixel type and dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
// Software Guide : BeginLatex
//
// The bilateral filter type is now instantiated using both the input
// image and the output image types and the filter object is created.
//
// \index{itk::BilateralImageFilter!instantiation}
// \index{itk::BilateralImageFilter!New()}
// \index{itk::BilateralImageFilter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::BilateralImageFilter<
InputImageType, OutputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another
// filter. Here, an image reader is used as a source.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The Bilateral filter requires two parameters. First, we must specify the
// standard deviation $\sigma$ to be used for the Gaussian kernel on image
// intensities. Second, the set of $\sigma$s to be used along each dimension
// in the space domain. This second parameter is supplied as an array of
// \code{float} or \code{double} values. The array dimension matches the
// image dimension. This mechanism makes it possible to enforce more
// coherence along some directions. For example, more smoothing can be done
// along the $X$ direction than along the $Y$ direction.
//
// In the following code example, the $\sigma$ values are taken from the
// command line. Note the use of \code{ImageType::ImageDimension} to get
// access to the image dimension at compile time.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int Dimension = InputImageType::ImageDimension;
double domainSigmas[ Dimension ];
for(unsigned int i=0; i<Dimension; i++)
{
domainSigmas[i] = atof( argv[3] );
}
const double rangeSigma = atof( argv[4] );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filter parameters are set with the methods \code{SetRangeSigma()}
// and \code{SetDomainSigma()}.
//
// \index{itk::BilateralImageFilter!SetRangeSigma()}
// \index{itk::BilateralImageFilter!SetDomainSigma()}
// \index{SetDomainSigma()!itk::BilateralImageFilter}
// \index{SetRangeSigma()!itk::BilateralImageFilter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetDomainSigma( domainSigmas );
filter->SetRangeSigma( rangeSigma );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of the filter is connected here to a intensity rescaler
// filter and then to a writer. Invoking \code{Update()} on the writer
// triggers the execution of both filters.
//
// Software Guide : EndLatex
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::RescaleIntensityImageFilter<
OutputImageType, WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
// Software Guide : BeginCodeSnippet
rescaler->SetInput( filter->GetOutput() );
writer->SetInput( rescaler->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.44\textwidth]{BilateralImageFilterOutput}
// \itkcaption[BilateralImageFilter output]{Effect of the BilateralImageFilter
// on a slice from a MRI proton density image of the brain.}
// \label{fig:BilateralImageFilterInputOutput}
// \end{figure}
//
// Figure \ref{fig:BilateralImageFilterInputOutput} illustrates the effect
// of this filter on a MRI proton density image of the brain. In this
// example the filter was run with a range $\sigma$ of $5.0$ and a domain
// $\sigma$ of $6.0$. The figure shows how homogeneous regions are
// smoothed and edges are preserved.
//
// \relatedClasses
// \begin{itemize}
// \item \doxygen{GradientAnisotropicDiffusionImageFilter}
// \item \doxygen{CurvatureAnisotropicDiffusionImageFilter}
// \item \doxygen{CurvatureFlowImageFilter}
// \end{itemize}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|