File: CannyEdgeDetectionImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (190 lines) | stat: -rw-r--r-- 6,535 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  This example introduces the use of the
//  \doxygen{CannyEdgeDetectionImageFilter}. Canny edge detection is widely used for
//  edge detection since it is the optimal solution satisfying the constraints
//  of good sensitivity, localization and noise robustness.  To achieve this
//  end, Canny edge detection is implemented internally as a multi-stage
//  algorithm, which involves Gaussian smoothing to remove noise, calculation
//  of gradient magnitudes to localize edge features, non-maximum suppression
//  to remove suprious features, and finally thresholding to yield a binary image.
//  Though the specifics of this internal pipeline are largely abstracted from
//  the user of the class, it is nonetheless beneficial to have a general
//  understanding of these components so that parameters can be appropriately
//  adjusted.
//
//  \index{itk::CannyEdgeDetectionImageFilter|textbf}
//
//  The first step required for using this filter is to include its header file.
//
//  \index{itk::CannyEdgeDetectionImageFilter!header}
//
//  Software Guide : EndLatex

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkCastImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

// Software Guide : BeginCodeSnippet
#include "itkCannyEdgeDetectionImageFilter.h"
// Software Guide : EndCodeSnippet

int main(int argc, char* argv[])
{

  if( argc < 3 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0]
              << " inputImage outputImage"
              << " [variance upperThreshold lowerThreshold]" << std::endl;
    return EXIT_FAILURE;
    }

  const char * inputFilename  = argv[1];
  const char * outputFilename = argv[2];

  float variance = 2.0;
  float upperThreshold = 0.0;
  float lowerThreshold = 0.0;

  if( argc > 3 )
    {
    variance = atof( argv[3] );
    }

  if( argc > 4 )
    {
    upperThreshold = atof( argv[4] );
    }

  if( argc > 5 )
    {
    lowerThreshold = atof( argv[5] );
    }

  std::cout << "Variance = " << variance << std::endl;
  std::cout << "UpperThreshold = " << upperThreshold << std::endl;
  std::cout << "LowerThreshold = " << lowerThreshold << std::endl;

  //  Software Guide : BeginLatex
  //
  //  In this example, images are read and written with \code{unsigned char}
  //  pixel type.  However, Canny edge detection requires floating point
  //  pixel types in order to avoid numerical errors.  For this reason,
  //  a separate internal image type with pixel type \code{double} is defined
  //  for edge detection.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  const   unsigned int  Dimension = 2;
  typedef unsigned char CharPixelType;  //  IO
  typedef double        RealPixelType;  //  Operations

  typedef itk::Image< CharPixelType, Dimension > CharImageType;
  typedef itk::Image< RealPixelType, Dimension > RealImageType;

  //  Software Guide : EndCodeSnippet

  typedef itk::ImageFileReader< CharImageType > ReaderType;
  typedef itk::ImageFileWriter< CharImageType > WriterType;

  //  Software Guide : BeginLatex
  //
  //  The \code{CharImageType} image is cast to and from \code{RealImageType}
  //  using \doxygen{CastImageFilter} and \code{RescaleIntensityImageFilter},
  //  respectively; both the input and output of \code{CannyEdgeDetectionImageFilter}
  //  are \code{RealImageType}.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  typedef itk::CastImageFilter< CharImageType, RealImageType >
    CastToRealFilterType;
  typedef itk::CannyEdgeDetectionImageFilter< RealImageType, RealImageType >
    CannyFilterType;
  typedef itk::RescaleIntensityImageFilter< RealImageType, CharImageType >
    RescaleFilterType;

  //  Software Guide : EndCodeSnippet

  //Setting the IO

  ReaderType::Pointer           reader      = ReaderType::New();
  CastToRealFilterType::Pointer toReal      = CastToRealFilterType::New();
  CannyFilterType::Pointer      cannyFilter = CannyFilterType::New();
  RescaleFilterType::Pointer    rescale     = RescaleFilterType::New();
  WriterType::Pointer           writer      = WriterType::New();

  reader->SetFileName( inputFilename  );
  writer->SetFileName( outputFilename );

  toReal->SetInput( reader->GetOutput() );
  cannyFilter->SetInput( toReal->GetOutput() );
  rescale->SetInput( cannyFilter->GetOutput() );
  writer->SetInput( rescale->GetOutput() );

  //  Software Guide : BeginLatex
  //
  //  In this example, three parameters of the Canny edge detection
  //  filter may be set via the \code{SetVariance()}, \code{SetUpperThreshold()},
  //  and \code{SetLowerThreshold()} methods.  Based on the previous discussion
  //  of the steps in the internal pipeline, we understand that
  //  \code{variance} adjusts the amount of Gaussian smoothing and
  //  \code{upperThreshold} and \code{lowerThreshold} control which edges are
  //  selected in the final step.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  cannyFilter->SetVariance( variance );
  cannyFilter->SetUpperThreshold( upperThreshold );
  cannyFilter->SetLowerThreshold( lowerThreshold );

  //  Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Finally, \code{Update()} is called on \code{writer} to trigger excecution
  //  of the pipeline.  As usual, the call is wrapped in a \code{try/catch}
  //  block.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & err )
    {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return EXIT_FAILURE;
    }

  // Software Guide : EndCodeSnippet

  return EXIT_SUCCESS;

}