1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// Due to the use of
// \href{http://www.boost.org/more/generic_programming.html}{Generic
// Programming} in the toolkit, most types are resolved at compile-time. Few
// decisions regarding type conversion are left to run-time. It is up to the
// user to anticipate the pixel type-conversions required in the data
// pipeline. In medical imaging applications it is usually not desirable
// to use a general pixel type since this may result in the loss of
// valuable information.
//
// This section introduces the mechanisms for explicit casting of images that
// flow through the pipeline. The following four filters are treated in this
// section: \doxygen{CastImageFilter}, \doxygen{RescaleIntensityImageFilter},
// \doxygen{ShiftScaleImageFilter} and \doxygen{NormalizeImageFilter}. These
// filters are not directly related to each other except that they all modify
// pixel values. They are presented together here for the purpose of
// comparing their individual features.
//
// The CastImageFilter is a very simple filter that acts pixel-wise on an
// input image, casting every pixel to the type of the output image. Note that
// this filter does not perform any arithmetic operation on the
// intensities. Applying CastImageFilter is equivalent to performing a
// \code{C-Style} cast on every pixel.
//
// \code{ outputPixel = static\_cast<OutputPixelType>( inputPixel ) }
//
// The RescaleIntensityImageFilter linearly scales the
// pixel values in such a way that the minimum and maximum values of the
// input are mapped to minimum and maximum values provided by the
// user. This is a typical process for forcing the dynamic range of the image
// to fit within a particular scale and is common for image display.
// The linear transformation applied by this filter can be expressed as
//
// \[ outputPixel = ( inputPixel - inpMin) \times
// \frac{(outMax - outMin )}{(inpMax-inpMin)} + outMin \].
//
// The ShiftScaleImageFilter also applies a linear transformation to
// the intensities of the input image, but the transformation is specified
// by the user in the form of a multiplying factor and a value to be added.
// This can be expressed as
//
// \[ outputPixel = \left( inputPixel + Shift \right) \times Scale\].
//
// The parameters of the linear transformation applied by the
// NormalizeImageFilter are computed internally such that the
// statistical distribution of gray levels in the output image have zero
// mean and a variance of one. This intensity correction is particularly
// useful in registration applications as a preprocessing step to the
// evaluation of mutual information metrics. The linear transformation of
// NormalizeImageFilter is given as
//
// \[ outputPixel = \frac{( inputPixel - mean )}{ \sqrt{ variance } } \].
//
// \index{Casting Images}
// \index{itk::CastImageFilter}
// \index{itk::RescaleIntensityImageFilter}
// \index{itk::ShiftScaleImageFilter}
// \index{itk::NormalizeImageFilter}
// \index{itk::ShiftScaleImageFilter!header}
// \index{itk::RescaleIntensityImageFilter!header}
// \index{itk::NormalizeImageFilter!header}
// \index{itk::CastImageFilter!header}
//
// As usual, the first step required to use these filters is to include their
// header files.
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
// Software Guide : BeginCodeSnippet
#include "itkCastImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkNormalizeImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 2 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Let's define pixel types for the input and output images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char InputPixelType;
typedef float OutputPixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, the input and output image types are defined.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Image< InputPixelType, 3 > InputImageType;
typedef itk::Image< OutputPixelType, 3 > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
// Software Guide : BeginLatex
//
// The filters are instantiated using the defined image types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CastImageFilter<
InputImageType, OutputImageType > CastFilterType;
typedef itk::RescaleIntensityImageFilter<
InputImageType, OutputImageType > RescaleFilterType;
typedef itk::ShiftScaleImageFilter<
InputImageType, OutputImageType > ShiftScaleFilterType;
typedef itk::NormalizeImageFilter<
InputImageType, OutputImageType > NormalizeFilterType;
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
// Software Guide : BeginLatex
//
// Object filters are created by invoking the \code{New()} method and
// assigning the result to \doxygen{SmartPointer}s.
//
// \index{itk::ShiftScaleImageFilter!New()}
// \index{itk::RescaleIntensityImageFilter!New()}
// \index{itk::NormalizeImageFilter!New()}
// \index{itk::CastImageFilter!New()}
// \index{itk::ShiftScaleImageFilter!Pointer}
// \index{itk::RescaleIntensityImageFilter!Pointer}
// \index{itk::NormalizeImageFilter!Pointer}
// \index{itk::CastImageFilter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CastFilterType::Pointer castFilter = CastFilterType::New();
RescaleFilterType::Pointer rescaleFilter = RescaleFilterType::New();
ShiftScaleFilterType::Pointer shiftFilter = ShiftScaleFilterType::New();
NormalizeFilterType::Pointer normalizeFilter = NormalizeFilterType::New();
// Software Guide : EndCodeSnippet
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// The output of a reader filter (whose creation is not shown here) is now
// connected as input to the various casting filters.
//
// \index{itk::ShiftScaleImageFilter!SetInput()}
// \index{itk::RescaleIntensityImageFilter!SetInput()}
// \index{itk::NormalizeImageFilter!SetInput()}
// \index{itk::CastImageFilter!SetInput()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
castFilter->SetInput( reader->GetOutput() );
shiftFilter->SetInput( reader->GetOutput() );
rescaleFilter->SetInput( reader->GetOutput() );
normalizeFilter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we proceed to setup the parameters required by each filter. The
// CastImageFilter and the NormalizeImageFilter do not
// require any parameters. The RescaleIntensityImageFilter, on
// the other hand, requires the user to provide the desired minimum and
// maximum pixel values of the output image. This is done by using the
// \code{SetOutputMinimum()} and \code{SetOutputMaximum()} methods as
// illustrated below.
//
// \index{itk::RescaleIntensityImageFilter!SetOutputMinimum()}
// \index{itk::RescaleIntensityImageFilter!SetOutputMaximum()}
// \index{SetOutputMinimum()!itk::RescaleIntensityImageFilter}
// \index{SetOutputMaximum()!itk::RescaleIntensityImageFilter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
rescaleFilter->SetOutputMinimum( 10 );
rescaleFilter->SetOutputMaximum( 250 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The ShiftScaleImageFilter requires a multiplication factor (scale) and a
// post-scaling additive value (shift). The methods \code{SetScale()} and
// \code{SetShift()} are used, respectively, to set these values.
//
// \index{itk::ShiftScaleImageFilter!SetShift()}
// \index{itk::ShiftScaleImageFilter!SetScale()}
// \index{SetShift()!itk::ShiftScaleImageFilter}
// \index{SetScale()!itk::ShiftScaleImageFilter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
shiftFilter->SetScale( 1.2 );
shiftFilter->SetShift( 25 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the filters are executed by invoking the \code{Update()} method.
//
// \index{itk::ShiftScaleImageFilter!Update()}
// \index{itk::RescaleIntensityImageFilter!Update()}
// \index{itk::NormalizeImageFilter!Update()}
// \index{itk::CastImageFilter!Update()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
castFilter->Update();
shiftFilter->Update();
rescaleFilter->Update();
normalizeFilter->Update();
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|