1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {CurvatureAnisotropicDiffusionImageFilterOutput.png}
// ARGUMENTS: 5 0.125 3
// Software Guide : EndCommandLineArgs
//
// Software Guide : BeginLatex
//
// The \doxygen{CurvatureAnisotropicDiffusionImageFilter} performs anisotropic
// diffusion on an image using a modified curvature diffusion equation (MCDE).
//
// MCDE does not exhibit the edge enhancing properties of classic anisotropic
// diffusion, which can under certain conditions undergo a ``negative''
// diffusion, which enhances the contrast of edges. Equations of the form of
// MCDE always undergo positive diffusion, with the conductance term only
// varying the strength of that diffusion.
//
// Qualitatively, MCDE compares well with other non-linear diffusion
// techniques. It is less sensitive to contrast than classic Perona-Malik
// style diffusion, and preserves finer detailed structures in images.
// There is a potential speed trade-off for using this function in place of
// itkGradientNDAnisotropicDiffusionFunction. Each iteration of the
// solution takes roughly twice as long. Fewer iterations, however, may be
// required to reach an acceptable solution.
//
// The MCDE equation is given as:
//
// \begin{equation}
// f_t = \mid \nabla f \mid \nabla \cdot c( \mid \nabla f \mid ) \frac{
// \nabla f }{ \mid \nabla f \mid }
// \end{equation}
//
// where the conductance modified curvature term is
//
// \begin{equation}
// \nabla \cdot \frac{\nabla f}{\mid \nabla f \mid}
// \end{equation}
//
// \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// The first step required for using this filter is to include its header file.
//
// \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCurvatureAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 6 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile ";
std::cerr << "numberOfIterations timeStep conductance useImageSpacingon/off" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Types should be selected based on the pixel types required for the
// input and output images. The image types are defined using the pixel
// type and the dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InputPixelType;
typedef float OutputPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
// Software Guide : BeginLatex
//
// The filter type is now instantiated using both the input image and the
// output image types. The filter object is created by the \code{New()}
// method.
//
// \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!instantiation}
// \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!New()}
// \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CurvatureAnisotropicDiffusionImageFilter<
InputImageType, OutputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another filter. Here,
// an image reader is used as source.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
const unsigned int numberOfIterations = atoi( argv[3] );
const double timeStep = atof( argv[4] );
const double conductance = atof( argv[5] );
const bool useImageSpacing = (argc != 6);
// Software Guide : BeginLatex
//
// This filter requires three parameters: the number of iterations to be
// performed, the time step used in the computation of the level set
// evolution and the value of conductance. These parameters are set using
// the methods \code{SetNumberOfIterations()}, \code{SetTimeStep()} and
// \code{SetConductance()} respectively. The filter can be executed by
// invoking \code{Update()}.
//
// \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Update()}
// \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetTimeStep()}
// \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetNumberOfIterations()}
// \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetConductanceParameter()}
// \index{SetTimeStep()!itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
// \index{SetNumberOfIterations()!itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
// \index{SetConductanceParameter()!itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetNumberOfIterations( numberOfIterations );
filter->SetTimeStep( timeStep );
filter->SetConductanceParameter( conductance );
if (useImageSpacing)
{
filter->UseImageSpacingOn();
}
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Typical values for the time step are 0.125 in $2D$ images and 0.0625 in
// $3D$ images. The number of iterations can be usually around $5$, more
// iterations will result in further smoothing and will increase the
// computing time linearly. The conductance parameter is usually around $3.0$.
//
// Software Guide : EndLatex
//
// If the output of this filter has been connected to other filters down the
// pipeline, updating any of the downstream filters would have triggered the
// execution of this one. For example, a writer filter could have been used
// after the curvature flow filter.
//
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::RescaleIntensityImageFilter<
OutputImageType, WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
rescaler->SetInput( filter->GetOutput() );
writer->SetInput( rescaler->GetOutput() );
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.44\textwidth]{CurvatureAnisotropicDiffusionImageFilterOutput}
// \itkcaption[CurvatureAnisotropicDiffusionImageFilter output]{Effect of the
// CurvatureAnisotropicDiffusionImageFilter on a slice from a MRI Proton
// Density image of the brain.}
// \label{fig:CurvatureAnisotropicDiffusionImageFilterInputOutput}
// \end{figure}
//
// Figure \ref{fig:CurvatureAnisotropicDiffusionImageFilterInputOutput}
// illustrates the effect of this filter on a MRI proton density image of
// the brain. In this example the filter was run with a time step of
// $0.125$, $5$ iterations and a conductance value of $3.0$. The figure
// shows how homogeneous regions are smoothed and edges are preserved.
//
// \relatedClasses
// \begin{itemize}
// \item \doxygen{BilateralImageFilter}
// \item \doxygen{CurvatureFlowImageFilter}
// \item \doxygen{GradientAnisotropicDiffusionImageFilter}
// \end{itemize}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|