File: CurvatureAnisotropicDiffusionImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (243 lines) | stat: -rw-r--r-- 9,113 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {CurvatureAnisotropicDiffusionImageFilterOutput.png}
//    ARGUMENTS:    5 0.125 3
//  Software Guide : EndCommandLineArgs
//
//  Software Guide : BeginLatex
//
//  The \doxygen{CurvatureAnisotropicDiffusionImageFilter} performs anisotropic
//  diffusion on an image using a modified curvature diffusion equation (MCDE).
//
//  MCDE does not exhibit the edge enhancing properties of classic anisotropic
//  diffusion, which can under certain conditions undergo a ``negative''
//  diffusion, which enhances the contrast of edges.  Equations of the form of
//  MCDE always undergo positive diffusion, with the conductance term only
//  varying the strength of that diffusion.
//
//  Qualitatively, MCDE compares well with other non-linear diffusion
//  techniques.  It is less sensitive to contrast than classic Perona-Malik
//  style diffusion, and preserves finer detailed structures in images.
//  There is a potential speed trade-off for using this function in place of
//  itkGradientNDAnisotropicDiffusionFunction.  Each iteration of the
//  solution takes roughly twice as long.  Fewer iterations, however, may be
//  required to reach an acceptable solution.
//
//  The MCDE equation is given as:
//
//  \begin{equation}
//  f_t = \mid \nabla f \mid \nabla \cdot c( \mid \nabla f \mid ) \frac{
//  \nabla f }{ \mid \nabla f \mid }
//  \end{equation}
//
//  where the conductance modified curvature term is
//
//  \begin{equation}
//  \nabla \cdot \frac{\nabla f}{\mid \nabla f \mid}
//  \end{equation}
//
//  \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
//
//  Software Guide : EndLatex


#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

//  Software Guide : BeginLatex
//
//  The first step required for using this filter is to include its header file.
//
//  \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkCurvatureAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 6 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile  outputImageFile ";
    std::cerr << "numberOfIterations  timeStep  conductance useImageSpacingon/off" << std::endl;
    return EXIT_FAILURE;
    }

  //  Software Guide : BeginLatex
  //
  //  Types should be selected based on the pixel types required for the
  //  input and output images.  The image types are defined using the pixel
  //  type and the dimension.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef    float    InputPixelType;
  typedef    float    OutputPixelType;

  typedef itk::Image< InputPixelType,  2 >   InputImageType;
  typedef itk::Image< OutputPixelType, 2 >   OutputImageType;
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType >  ReaderType;


  //  Software Guide : BeginLatex
  //
  //  The filter type is now instantiated using both the input image and the
  //  output image types. The filter object is created by the \code{New()}
  //  method.
  //
  //  \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!instantiation}
  //  \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!New()}
  //  \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::CurvatureAnisotropicDiffusionImageFilter<
               InputImageType, OutputImageType >  FilterType;

  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet


  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );

  //  Software Guide : BeginLatex
  //
  //  The input image can be obtained from the output of another filter. Here,
  //  an image reader is used as source.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetInput( reader->GetOutput() );
  // Software Guide : EndCodeSnippet


  const unsigned int numberOfIterations = atoi( argv[3] );
  const double       timeStep = atof( argv[4] );
  const double       conductance = atof( argv[5] );
  const bool         useImageSpacing = (argc != 6);

  //  Software Guide : BeginLatex
  //
  //  This filter requires three parameters: the number of iterations to be
  //  performed, the time step used in the computation of the level set
  //  evolution and the value of conductance. These parameters are set using
  //  the methods \code{SetNumberOfIterations()}, \code{SetTimeStep()} and
  //  \code{SetConductance()} respectively.  The filter can be executed by
  //  invoking \code{Update()}.
  //
  //  \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Update()}
  //  \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetTimeStep()}
  //  \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetNumberOfIterations()}
  //  \index{itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetConductanceParameter()}
  //  \index{SetTimeStep()!itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
  //  \index{SetNumberOfIterations()!itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
  //  \index{SetConductanceParameter()!itk::Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetNumberOfIterations( numberOfIterations );
  filter->SetTimeStep( timeStep );
  filter->SetConductanceParameter( conductance );
  if (useImageSpacing)
    {
    filter->UseImageSpacingOn();
    }
  filter->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Typical values for the time step are 0.125 in $2D$ images and 0.0625 in
  //  $3D$ images. The number of iterations can be usually around $5$, more
  //  iterations will result in further smoothing and will increase the
  //  computing time linearly. The conductance parameter is usually around $3.0$.
  //
  //  Software Guide : EndLatex


  //
  //  If the output of this filter has been connected to other filters down the
  //  pipeline, updating any of the downstream filters would have triggered the
  //  execution of this one. For example, a writer filter could have been used
  //  after the curvature flow filter.
  //

  typedef unsigned char                          WritePixelType;
  typedef itk::Image< WritePixelType, 2 >        WriteImageType;
  typedef itk::RescaleIntensityImageFilter<
               OutputImageType, WriteImageType > RescaleFilterType;

  RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
  rescaler->SetOutputMinimum(   0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< WriteImageType >  WriterType;

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );
  rescaler->SetInput( filter->GetOutput() );
  writer->SetInput( rescaler->GetOutput() );
  writer->Update();


  //  Software Guide : BeginLatex
  //
  // \begin{figure} \center
  // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
  // \includegraphics[width=0.44\textwidth]{CurvatureAnisotropicDiffusionImageFilterOutput}
  // \itkcaption[CurvatureAnisotropicDiffusionImageFilter output]{Effect of the
  // CurvatureAnisotropicDiffusionImageFilter on a slice from a MRI Proton
  // Density image  of the brain.}
  // \label{fig:CurvatureAnisotropicDiffusionImageFilterInputOutput}
  // \end{figure}
  //
  //  Figure \ref{fig:CurvatureAnisotropicDiffusionImageFilterInputOutput}
  //  illustrates the effect of this filter on a MRI proton density image of
  //  the brain. In this example the filter was run with a time step of
  //  $0.125$, $5$ iterations and a conductance value of $3.0$.  The figure
  //  shows how homogeneous regions are smoothed and edges are preserved.
  //
  //  \relatedClasses
  //  \begin{itemize}
  //  \item \doxygen{BilateralImageFilter}
  //  \item \doxygen{CurvatureFlowImageFilter}
  //  \item \doxygen{GradientAnisotropicDiffusionImageFilter}
  //  \end{itemize}
  //
  //  Software Guide : EndLatex

  return EXIT_SUCCESS;
}