File: FFTImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (330 lines) | stat: -rw-r--r-- 11,068 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  In this section we assume that you are familiar with Spectral Analysis, in
//  particular with the concepts of the Fourier Transform and the numerical
//  implementation of the Fast Fourier transform. If you are not familiar with
//  these concepts you may want to consult first any of the many available
//  introductory books to spectral analysis~\cite{Bracewell1999,Bracewell2004}.
//
//  This example illustrates how to use the Fast Fourier Transform filter (FFT)
//  for processing an image in the spectral domain. Given that FFT computation
//  can be CPU intensive, there are multiple hardware specific implementations
//  of FFT. It is convenient in many cases to delegate the actual computation
//  of the transform to local available libraries. Particular examples of those
//  libraries are fftw\footnote{http://www.fftw.org} and the VXL implementation
//  of FFT. For this reason ITK provides a base abstract class that factorizes
//  the interface to multiple specific implementations of FFT. This base class
//  is the \doxygen{ForwardFFTImageFilter}, and two of its
//  derived classes are \doxygen{VnlForwardFFTImageFilter} and
//  \doxygen{FFTWRealToComplexConjugateImageFilter}.
//
//
//  \index{itk::Forward\-FFT\-Image\-Filter}
//  \index{itk::Vnl\-Forward\-FFT\-Image\-Filter}
//  \index{itk::FFTW\-Forward\-FFT\-Image\-Filter}
//
//  Software Guide : EndLatex

// Software Guide : BeginLatex
//
// A typical application that uses FFT will need to include the following
// header files.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
#include "itkImage.h"
#include "itkVnlForwardFFTImageFilter.h"
#include "itkComplexToRealImageFilter.h"
#include "itkComplexToImaginaryImageFilter.h"
// Software Guide : EndCodeSnippet

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"


int main( int argc, char * argv [] )
{
  if( argc < 5 )
    {
    std::cerr << "Usage: " << argv[0] << " inputScalarImage  outputRealPartOfComplexImage outputRealImaginaryPartOfComplexImage outputComplex" << std::endl;
    }


// Software Guide : BeginLatex
//
// The first decision to make is related to the pixel type and dimension of the
// images on which we want to compute the Fourier transform.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef float  PixelType;
  const unsigned int Dimension = 2;

  typedef itk::Image< PixelType, Dimension > ImageType;
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We use the same image type in order to instantiate the FFT filter, in this
// case the \doxygen{VnlForwardFFTImageFilter}. Once the filter type is
// instantiated, we can use it for creating one object by invoking the
// \code{New()} method and assigning the result to a SmartPointer.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  typedef itk::VnlForwardFFTImageFilter< ImageType >  FFTFilterType;

  FFTFilterType::Pointer fftFilter = FFTFilterType::New();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// The input to this filter can be taken from a reader, for example.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::ImageFileReader< ImageType >  ReaderType;
  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );

  fftFilter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// The execution of the filter can be triggered by invoking the \code{Update()}
// method.  Since this invocation can eventually throw an exception, the call
// must be placed inside a try/catch block.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  try
    {
    fftFilter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Error: " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// In general the output of the FFT filter will be a complex image. We can
// proceed to save this image in a file for further analysis. This can be done
// by simply instantiating an \doxygen{ImageFileWriter} using the trait of the
// output image from the FFT filter. We construct one instance of the writer
// and pass the output of the FFT filter as the input of the writer.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef FFTFilterType::OutputImageType    ComplexImageType;

  typedef itk::ImageFileWriter< ComplexImageType > ComplexWriterType;

  ComplexWriterType::Pointer complexWriter = ComplexWriterType::New();
  complexWriter->SetFileName( argv[4] );

  complexWriter->SetInput( fftFilter->GetOutput() );
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// Finally we invoke the \code{Update()} method placed inside a try/catch
// block.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  try
    {
    complexWriter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Error: " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// In addition to saving the complex image into a file, we could also extract
// its real and imaginary parts for further analysis. This can be done with the
// \doxygen{ComplexToRealImageFilter} and the
// \doxygen{ComplexToImaginaryImageFilter}.
//
// We instantiate first the ImageFilter that will help us to extract the real
// part from the complex image.  The \code{ComplexToRealImageFilter} takes as
// its first template parameter the type of the complex image and as its second
// template parameter it takes the type of the output image pixel. We create
// one instance of this filter and connect as its input the output of the FFT
// filter.
//
// \index{itk::ComplexToRealImageFilter}
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::ComplexToRealImageFilter<
                 ComplexImageType, ImageType > RealFilterType;

  RealFilterType::Pointer realFilter = RealFilterType::New();

  realFilter->SetInput( fftFilter->GetOutput() );
// Software Guide : EndCodeSnippet


  typedef unsigned char                           WritePixelType;
  typedef itk::Image< WritePixelType, Dimension > WriteImageType;


// Software Guide : BeginLatex
//
// Since the range of intensities in the Fourier domain can be quite
// concentrated, it is convenient to rescale the image in order to
// visualize it. For this purpose we instantiate a
// \doxygen{RescaleIntensityImageFilter} that will rescale the intensities of
// the \code{real} image into a range suitable for writing in a file. We also
// set the minimum and maximum values of the output to the range of the pixel
// type used for writing.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::RescaleIntensityImageFilter<
                                ImageType,
                                WriteImageType > RescaleFilterType;

  RescaleFilterType::Pointer intensityRescaler = RescaleFilterType::New();

  intensityRescaler->SetInput( realFilter->GetOutput() );

  intensityRescaler->SetOutputMinimum(  0  );
  intensityRescaler->SetOutputMaximum( 255 );
// Software Guide : EndCodeSnippet

  typedef itk::ImageFileWriter< WriteImageType > WriterType;

  WriterType::Pointer writer = WriterType::New();

  writer->SetFileName( argv[2] );

  writer->SetInput( intensityRescaler->GetOutput() );

  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Error writing the real image: " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

// Software Guide : BeginLatex
//
// We can now instantiate the ImageFilter that will help us to extract the
// imaginary part from the complex image.  The filter that we use here is the
// \doxygen{ComplexToImaginaryImageFilter}. It takes as first template
// parameter the type of the complex image and as second template parameter it
// takes the type of the output image pixel. An instance of the filter is
// created, and its input is connected to the output of the FFT filter.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef FFTFilterType::OutputImageType    ComplexImageType;

  typedef itk::ComplexToImaginaryImageFilter<
                       ComplexImageType, ImageType > ImaginaryFilterType;

  ImaginaryFilterType::Pointer imaginaryFilter = ImaginaryFilterType::New();

  imaginaryFilter->SetInput( fftFilter->GetOutput() );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// The Imaginary image can then be rescaled and saved into a file, just as we
// did with the Real part.
//
// Software Guide : EndLatex

  intensityRescaler->SetInput( imaginaryFilter->GetOutput() );
  writer->SetFileName( argv[3] );

  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Error writing the imaginary image: " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }


// Software Guide : BeginLatex
//
// For the sake of illustrating the use of a \doxygen{ImageFileReader} on
// Complex images, here we instantiate a reader that will load the Complex
// image that we just saved. Note that nothing special is required in this
// case. The instantiation is done just the same as for any other type of
// image, which once again illustrates the power of Generic Programming.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  typedef itk::ImageFileReader< ComplexImageType > ComplexReaderType;

  ComplexReaderType::Pointer complexReader = ComplexReaderType::New();

  complexReader->SetFileName( argv[4] );
  complexReader->Update();
  // Software Guide : EndCodeSnippet


  // A way of testing the pixel type of an image in file is to
  // invoke the ImageIO object from the reader and then call
  // \code{GetPixelTypeAsString()}
  complexReader->GetImageIO()->GetPixelTypeAsString(
                    complexReader->GetImageIO()->GetPixelType() );


  return EXIT_SUCCESS;
}