File: GradientAnisotropicDiffusionImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (226 lines) | stat: -rw-r--r-- 7,998 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {GradientAnisotropicDiffusionImageFilterOutput.png}
//    ARGUMENTS:    15 0.1 3
//  Software Guide : EndCommandLineArgs
//  Software Guide : BeginLatex
//
//  The \doxygen{GradientAnisotropicDiffusionImageFilter}  implements an
//  $N$-dimensional version of the classic Perona-Malik anisotropic diffusion
//  equation for scalar-valued images \cite{Perona1990}.
//
//  The conductance term for this implementation is chosen as a function of the
//  gradient magnitude of the image at each point, reducing the strength of
//  diffusion at edge pixels.
//
//  \begin{equation}
//  C(\mathbf{x}) = e^{-(\frac{\parallel \nabla U(\mathbf{x}) \parallel}{K})^2}
//  \end{equation}
//
//  The numerical implementation of this equation is similar to that described
//  in the Perona-Malik paper \cite{Perona1990}, but uses a more robust technique
//  for gradient magnitude estimation and has been generalized to $N$-dimensions.
//
//  \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter}
//
//  Software Guide : EndLatex


#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

//  Software Guide : BeginLatex
//
//  The first step required to use this filter is to include its header file.
//
//  \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkGradientAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 6 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile  outputImageFile ";
    std::cerr << "numberOfIterations  timeStep  conductance" << std::endl;
    return EXIT_FAILURE;
    }


  //  Software Guide : BeginLatex
  //
  //  Types should be selected based on the pixel types required for the
  //  input and output images.  The image types are defined using the pixel
  //  type and the dimension.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef    float    InputPixelType;
  typedef    float    OutputPixelType;

  typedef itk::Image< InputPixelType,  2 >   InputImageType;
  typedef itk::Image< OutputPixelType, 2 >   OutputImageType;
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType >  ReaderType;


  //  Software Guide : BeginLatex
  //
  //  The filter type is now instantiated using both the input image and the
  //  output image types. The filter object is created by the \code{New()}
  //  method.
  //
  //  \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!instantiation}
  //  \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!New()}
  //  \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::GradientAnisotropicDiffusionImageFilter<
               InputImageType, OutputImageType >  FilterType;
  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet


  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );


  //  Software Guide : BeginLatex
  //
  //  The input image can be obtained from the output of another filter. Here,
  //  an image reader is used as source.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetInput( reader->GetOutput() );
  // Software Guide : EndCodeSnippet


  const unsigned int numberOfIterations = atoi( argv[3] );

  const double       timeStep = atof( argv[4] );

  const double       conductance = atof( argv[5] );


  //  Software Guide : BeginLatex
  //
  //  This filter requires three parameters: the number of iterations to be
  //  performed, the time step and the conductance parameter used in the
  //  computation of the level set evolution. These parameters are set using
  //  the methods \code{SetNumberOfIterations()}, \code{SetTimeStep()} and
  //  \code{SetConductanceParameter()} respectively.  The filter can be
  //  executed by invoking \code{Update()}.
  //
  //  \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!Update()}
  //  \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!SetTimeStep()}
  //  \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!SetConductanceParameter()}
  //  \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!SetNumberOfIterations()}
  //  \index{SetTimeStep()!itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter}
  //  \index{SetNumberOfIterations()!itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetNumberOfIterations( numberOfIterations );
  filter->SetTimeStep( timeStep );
  filter->SetConductanceParameter( conductance );

  filter->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Typical values for the time step are $0.25$ in $2D$ images and $0.125$
  //  in $3D$ images. The number of iterations is typically set to $5$; more
  //  iterations result in further smoothing and will increase the computing
  //  time linearly.
  //
  //  Software Guide : EndLatex


  //
  //  The output of the filter is rescaled here and then sent to a writer.
  //
  typedef unsigned char                          WritePixelType;
  typedef itk::Image< WritePixelType, 2 >        WriteImageType;
  typedef itk::RescaleIntensityImageFilter<
               OutputImageType, WriteImageType > RescaleFilterType;

  RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
  rescaler->SetOutputMinimum(   0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< WriteImageType >  WriterType;

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );


  rescaler->SetInput( filter->GetOutput() );
  writer->SetInput( rescaler->GetOutput() );
  writer->Update();


  //  Software Guide : BeginLatex
  //
  // \begin{figure} \center
  // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
  // \includegraphics[width=0.44\textwidth]{GradientAnisotropicDiffusionImageFilterOutput}
  // \itkcaption[GradientAnisotropicDiffusionImageFilter output]{Effect of the
  // GradientAnisotropicDiffusionImageFilter on a slice from a MRI Proton
  // Density image  of the brain.}
  // \label{fig:GradientAnisotropicDiffusionImageFilterInputOutput}
  // \end{figure}
  //
  //  Figure \ref{fig:GradientAnisotropicDiffusionImageFilterInputOutput}
  //  illustrates the effect of this filter on a MRI proton density image of
  //  the brain. In this example the filter was run with a time step of $0.25$,
  //  and $5$ iterations.  The figure shows how homogeneous regions are
  // smoothed and edges are preserved.
  //
  //  \relatedClasses
  //  \begin{itemize}
  //  \item \doxygen{BilateralImageFilter}
  //  \item \doxygen{CurvatureAnisotropicDiffusionImageFilter}
  //  \item \doxygen{CurvatureFlowImageFilter}
  //  \end{itemize}
  //
  //  Software Guide : EndLatex


  return EXIT_SUCCESS;
}