1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {GradientMagnitudeImageFilterOutput.png}
// Software Guide : EndCommandLineArgs
//
// Software Guide : BeginLatex
//
// The magnitude of the image gradient is extensively used in image analysis,
// mainly to help in the determination of object contours and the
// separation of homogeneous regions. The
// \doxygen{GradientMagnitudeImageFilter} computes the magnitude of the
// image gradient at each pixel location using a simple finite differences
// approach. For example, in the case of $2D$ the computation is equivalent
// to convolving the image with masks of type
//
// \begin{center}
// \begin{picture}(200,50)
// \put( 5.0,32.0){\framebox(30.0,15.0){-1}}
// \put(35.0,32.0){\framebox(30.0,15.0){0}}
// \put(65.0,32.0){\framebox(30.0,15.0){1}}
// \put(105.0,17.0){\framebox(20.0,15.0){1}}
// \put(105.0,32.0){\framebox(20.0,15.0){0}}
// \put(105.0,47.0){\framebox(20.0,15.0){-1}}
// \end{picture}
// \end{center}
//
// then adding the sum of their squares and computing the square root of the sum.
//
// This filter will work on images of any dimension thanks to the internal
// use of \doxygen{NeighborhoodIterator} and \doxygen{NeighborhoodOperator}.
//
// \index{itk::GradientMagnitudeImageFilter}
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// The first step required to use this filter is to include its header file.
//
// \index{itk::GradientMagnitudeImageFilter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkGradientMagnitudeImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 3 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Types should be chosen for the pixels of the input and output images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InputPixelType;
typedef float OutputPixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input and output image types can be defined using the pixel types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
// Software Guide : BeginLatex
//
// The type of the gradient magnitude filter is defined by the
// input image and the output image types.
//
// \index{itk::GradientMagnitudeImageFilter!instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::GradientMagnitudeImageFilter<
InputImageType, OutputImageType > FilterType;
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// A filter object is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{SmartPointer}.
//
// \index{itk::GradientMagnitudeImageFilter!New()}
// \index{itk::GradientMagnitudeImageFilter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another filter. Here,
// the source is an image reader.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the filter is executed by invoking the \code{Update()} method.
//
// \index{itk::GradientMagnitudeImageFilter!Update()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// If the output of this filter has been connected to other filters in a
// pipeline, updating any of the downstream filters will also trigger an
// update of this filter. For example, the gradient magnitude filter may be
// connected to an image writer.
//
// Software Guide : EndLatex
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::RescaleIntensityImageFilter<
OutputImageType, WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
// Software Guide : BeginCodeSnippet
rescaler->SetInput( filter->GetOutput() );
writer->SetInput( rescaler->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.44\textwidth]{GradientMagnitudeImageFilterOutput}
// \itkcaption[GradientMagnitudeImageFilter output]{Effect of the
// GradientMagnitudeImageFilter on a slice from a MRI proton density image
// of the brain.}
// \label{fig:GradientMagnitudeImageFilterInputOutput}
// \end{figure}
//
// Figure \ref{fig:GradientMagnitudeImageFilterInputOutput} illustrates the
// effect of the gradient magnitude filter on a MRI proton density image of
// the brain. The figure shows the sensitivity of this filter to noisy data.
//
// Attention should be paid to the image type chosen to represent the output
// image since the dynamic range of the gradient magnitude image is usually
// smaller than the dynamic range of the input image. As always, there are
// exceptions to this rule, for example, synthetic images that contain high
// contrast objects.
//
// This filter does not apply any smoothing to the image before computing the
// gradients. The results can therefore be very sensitive to noise and may
// not be the best choice for scale-space analysis.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|