1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {GradientMagnitudeRecursiveGaussianImageFilterOutput3.png}
// ARGUMENTS: 3
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {GradientMagnitudeRecursiveGaussianImageFilterOutput5.png}
// ARGUMENTS: 5
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// Differentiation is an ill-defined operation over digital data. In practice
// it is convenient to define a scale in which the differentiation should be
// performed. This is usually done by preprocessing the data with a smoothing
// filter. It has been shown that a Gaussian kernel is the most convenient
// choice for performing such smoothing. By choosing a particular value for
// the standard deviation ($\sigma$) of the Gaussian, an associated scale is
// selected that ignores high frequency content, commonly considered image
// noise.
//
// The \doxygen{GradientMagnitudeRecursiveGaussianImageFilter} computes the
// magnitude of the image gradient at each pixel location. The computational
// process is equivalent to first smoothing the image by convolving it with a
// Gaussian kernel and then applying a differential operator. The user
// selects the value of $\sigma$.
//
// Internally this is done by applying an IIR \footnote{Infinite Impulse
// Response} filter that approximates a convolution with the derivative of the
// Gaussian kernel. Traditional convolution will produce a more accurate
// result, but the IIR approach is much faster, especially using large
// $\sigma$s \cite{Deriche1990,Deriche1993}.
//
// GradientMagnitudeRecursiveGaussianImageFilter will work on images of
// any dimension by taking advantage of the natural separability of the
// Gaussian kernel and its derivatives.
//
// \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter}
//
// Software Guide : EndLatex
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// The first step required to use this filter is to include its header
// file.
//
// \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile sigma" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Types should be instantiated based on the pixels of the input and
// output images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InputPixelType;
typedef float OutputPixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// With them, the input and output image types can be instantiated.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
// Software Guide : BeginLatex
//
// The filter type is now instantiated using both the input image and the
// output image types.
//
// \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<
InputImageType, OutputImageType > FilterType;
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// A filter object is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{SmartPointer}.
//
// \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!New()}
// \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another filter. Here,
// an image reader is used as source.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The standard deviation of the Gaussian smoothing kernel is now set.
//
// \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!SetSigma()}
// \index{SetSigma()!itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter}
//
// Software Guide : EndLatex
const double sigma = atof( argv[3] );
// Software Guide : BeginCodeSnippet
filter->SetSigma( sigma );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally the filter is executed by invoking the \code{Update()} method.
//
// \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!Update()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// If connected to other filters in a pipeline, this filter will
// automatically update when any downstream filters are updated. For
// example, we may connect this gradient magnitude filter to an image file
// writer and then update the writer.
//
// Software Guide : EndLatex
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::RescaleIntensityImageFilter<
OutputImageType, WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
// Software Guide : BeginCodeSnippet
rescaler->SetInput( filter->GetOutput() );
writer->SetInput( rescaler->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{GradientMagnitudeRecursiveGaussianImageFilterOutput3}
// \includegraphics[width=0.44\textwidth]{GradientMagnitudeRecursiveGaussianImageFilterOutput5}
// \itkcaption[GradientMagnitudeRecursiveGaussianImageFilter output]{Effect of
// the GradientMagnitudeRecursiveGaussianImageFilter on a slice from a MRI
// proton density image of the brain.}
// \label{fig:GradientMagnitudeRecursiveGaussianImageFilterInputOutput}
// \end{figure}
//
// Figure
// \ref{fig:GradientMagnitudeRecursiveGaussianImageFilterInputOutput}
// illustrates the effect of this filter on a MRI proton density image of
// the brain using $\sigma$ values of $3$ (left) and $5$
// (right). The figure shows how the sensitivity to noise can be
// regulated by selecting an appropriate $\sigma$. This type of
// scale-tunable filter is suitable for performing scale-space analysis.
//
// Attention should be paid to the image type chosen to represent the output
// image since the dynamic range of the gradient magnitude image is usually
// smaller than the dynamic range of the input image.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|