File: GradientMagnitudeRecursiveGaussianImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (257 lines) | stat: -rw-r--r-- 8,795 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {GradientMagnitudeRecursiveGaussianImageFilterOutput3.png}
//    ARGUMENTS:    3
//  Software Guide : EndCommandLineArgs
//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {GradientMagnitudeRecursiveGaussianImageFilterOutput5.png}
//    ARGUMENTS:    5
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
//
//  Differentiation is an ill-defined operation over digital data. In practice
//  it is convenient to define a scale in which the differentiation should be
//  performed. This is usually done by preprocessing the data with a smoothing
//  filter. It has been shown that a Gaussian kernel is the most convenient
//  choice for performing such smoothing. By choosing a particular value for
//  the standard deviation ($\sigma$) of the Gaussian, an associated scale is
//  selected that ignores high frequency content, commonly considered image
//  noise.
//
//  The \doxygen{GradientMagnitudeRecursiveGaussianImageFilter} computes the
//  magnitude of the image gradient at each pixel location.  The computational
//  process is equivalent to first smoothing the image by convolving it with a
//  Gaussian kernel and then applying a differential operator.  The user
//  selects the value of $\sigma$.
//
//  Internally this is done by applying an IIR \footnote{Infinite Impulse
//  Response} filter that approximates a convolution with the derivative of the
//  Gaussian kernel.  Traditional convolution will produce a more accurate
//  result, but the IIR approach is much faster, especially using large
//  $\sigma$s \cite{Deriche1990,Deriche1993}.
//
//  GradientMagnitudeRecursiveGaussianImageFilter will work on images of
//  any dimension by taking advantage of the natural separability of the
//  Gaussian kernel and its derivatives.
//
//  \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter}
//
//  Software Guide : EndLatex


#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

//  Software Guide : BeginLatex
//
//  The first step required to use this filter is to include its header
//  file.
//
//  \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile   outputImageFile   sigma" << std::endl;
    return EXIT_FAILURE;
    }


  //  Software Guide : BeginLatex
  //
  //  Types should be instantiated based on the pixels of the input and
  //  output images.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef    float    InputPixelType;
  typedef    float    OutputPixelType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  With them, the input and output image types can be instantiated.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Image< InputPixelType,  2 >   InputImageType;
  typedef itk::Image< OutputPixelType, 2 >   OutputImageType;
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType >  ReaderType;


  //  Software Guide : BeginLatex
  //
  //  The filter type is now instantiated using both the input image and the
  //  output image types.
  //
  //  \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!Instantiation}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<
                        InputImageType, OutputImageType >  FilterType;
  // Software Guide : EndCodeSnippet


  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );


  //  Software Guide : BeginLatex
  //
  //  A filter object is created by invoking the \code{New()} method and
  //  assigning the result to a \doxygen{SmartPointer}.
  //
  //  \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!New()}
  //  \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The input image can be obtained from the output of another filter. Here,
  //  an image reader is used as source.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetInput( reader->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The standard deviation of the Gaussian smoothing kernel is now set.
  //
  //  \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!SetSigma()}
  //  \index{SetSigma()!itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter}
  //
  //  Software Guide : EndLatex
  const double sigma = atof( argv[3] );


  // Software Guide : BeginCodeSnippet
  filter->SetSigma( sigma );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Finally the filter is executed by invoking the \code{Update()} method.
  //
  //  \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!Update()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  filter->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  If connected to other filters in a pipeline, this filter will
  //  automatically update when any downstream filters are updated.  For
  //  example, we may connect this gradient magnitude filter to an image file
  //  writer and then update the writer.
  //
  //  Software Guide : EndLatex


  typedef unsigned char                   WritePixelType;
  typedef itk::Image< WritePixelType, 2 > WriteImageType;

  typedef itk::RescaleIntensityImageFilter<
                   OutputImageType, WriteImageType > RescaleFilterType;

  RescaleFilterType::Pointer rescaler = RescaleFilterType::New();

  rescaler->SetOutputMinimum(   0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< WriteImageType >  WriterType;

  WriterType::Pointer writer = WriterType::New();

  writer->SetFileName( argv[2] );


  // Software Guide : BeginCodeSnippet
  rescaler->SetInput( filter->GetOutput() );
  writer->SetInput( rescaler->GetOutput() );
  writer->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{GradientMagnitudeRecursiveGaussianImageFilterOutput3}
  // \includegraphics[width=0.44\textwidth]{GradientMagnitudeRecursiveGaussianImageFilterOutput5}
  // \itkcaption[GradientMagnitudeRecursiveGaussianImageFilter output]{Effect of
  // the GradientMagnitudeRecursiveGaussianImageFilter on a slice from a MRI
  // proton density image of the brain.}
  // \label{fig:GradientMagnitudeRecursiveGaussianImageFilterInputOutput}
  // \end{figure}
  //
  //  Figure
  //  \ref{fig:GradientMagnitudeRecursiveGaussianImageFilterInputOutput}
  //  illustrates the effect of this filter on a MRI proton density image of
  //  the brain using $\sigma$ values of $3$ (left) and $5$
  //  (right).  The figure shows how the sensitivity to noise can be
  //  regulated by selecting an appropriate $\sigma$.  This type of
  //  scale-tunable filter is suitable for performing scale-space analysis.
  //
  // Attention should be paid to the image type chosen to represent the output
  //  image since the dynamic range of the gradient magnitude image is usually
  //  smaller than the dynamic range of the input image.
  //
  //  Software Guide : EndLatex


  return EXIT_SUCCESS;
}