1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {GradientRecursiveGaussianImageFilterTest.mha}
// ARGUMENTS: {GradientVectorFlowImageFilterOutput.mha}
// ARGUMENTS: 5 2000.0
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The \doxygen{GradientVectorFlowImageFilter} smooths multi-components images
// such as vector fields and color images by applying a computation of the
// diffusion equation. A typical use of this filter is to smooth the vector
// field resulting from computing the gradient of an image, with the purpose
// of using the smoothed field in order to guide a deformable model.
//
// The input image must be a multi-components images.
//
// \index{itk::GradientVectorFlowImageFilter}
//
// Software Guide : EndLatex
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// The first step required to use this filter is to include its header file.
//
// \index{itk::GradientVectorFlowImageFilter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkGradientVectorFlowImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 5 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile";
std::cerr << " numberOfIterations noiseLevel" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Types should be selected based on the pixel types required for the input
// and output images. In this particular case, the input and output pixel
// types are multicomponents type such as itk::Vectors.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int Dimension = 3;
typedef float InputValueType;
typedef float OutputValueType;
typedef itk::Vector< InputValueType, Dimension > InputPixelType;
typedef itk::Vector< OutputValueType, Dimension > OutputPixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// With them, the input and output image types can be instantiated.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
// Software Guide : BeginLatex
//
// The GradientVectorFlow filter type is now instantiated using both the
// input image and the output image types.
//
// \index{itk::GradientVectorFlowImageFilter!instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::GradientVectorFlowImageFilter<
InputImageType, OutputImageType > FilterType;
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// A filter object is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{SmartPointer}.
//
// \index{itk::GradientVectorFlowImageFilter!New()}
// \index{itk::GradientVectorFlowImageFilter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another filter. Here,
// an image reader is used as source.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
const unsigned int numberOfIterations = atoi( argv[3] );
const double noiseLevel = atof( argv[4] );
// Software Guide : BeginLatex
//
// The GradientVectorFlow filter requires two parameters, the number of
// iterations to be performed and the noise level of the input image. The
// noise level will be used to estimate the time step that should be used in
// the computation of the diffusion. These two parameters are set using the
// methods \code{SetNumberOfIterations()} and \code{SetNoiseLevel()}
// respectively. Then the filter can be executed by invoking
// \code{Update()}.
//
// \index{itk::GradientVectorFlowImageFilter!Update()}
// \index{itk::GradientVectorFlowImageFilter!SetNoiseLevel()}
// \index{itk::GradientVectorFlowImageFilter!SetNumberOfIterations()}
// \index{SetNoiseLevel()!itk::GradientVectorFlowImageFilter}
// \index{SetNumberOfIterations()!itk::GradientVectorFlowImageFilter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetIterationNum( numberOfIterations );
filter->SetNoiseLevel( noiseLevel );
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// When using as input the result of a gradient filter, then the typical
// values for the noise level will be around 2000.0.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// If the output of this filter has been connected to other filters down
// the pipeline, updating any of the downstream filters will
// triggered the execution of this one. For example, a writer filter could
// have been used after the curvature flow filter.
//
// Software Guide : EndLatex
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
// Software Guide : BeginCodeSnippet
writer->SetInput( filter->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
// In order to visualize the resulting vector field you could use ParaView or
// VV (the 4D Slicer).
return EXIT_SUCCESS;
}
|