File: GradientVectorFlowImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (204 lines) | stat: -rw-r--r-- 6,878 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {GradientRecursiveGaussianImageFilterTest.mha}
//    ARGUMENTS: {GradientVectorFlowImageFilterOutput.mha}
//    ARGUMENTS:    5 2000.0
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
//
//  The \doxygen{GradientVectorFlowImageFilter} smooths multi-components images
//  such as vector fields and color images by applying a computation of the
//  diffusion equation.  A typical use of this filter is to smooth the vector
//  field resulting from computing the gradient of an image, with the purpose
//  of using the smoothed field in order to guide a deformable model.
//
//  The input image must be a multi-components images.
//
//  \index{itk::GradientVectorFlowImageFilter}
//
//  Software Guide : EndLatex


#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

//  Software Guide : BeginLatex
//
//  The first step required to use this filter is to include its header file.
//
//  \index{itk::GradientVectorFlowImageFilter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkGradientVectorFlowImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 5 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile  outputImageFile";
    std::cerr << " numberOfIterations  noiseLevel" << std::endl;
    return EXIT_FAILURE;
    }

  //  Software Guide : BeginLatex
  //
  //  Types should be selected based on the pixel types required for the input
  //  and output images. In this particular case, the input and output pixel
  //  types are multicomponents type such as itk::Vectors.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  const unsigned int                                Dimension = 3;
  typedef float                                     InputValueType;
  typedef float                                     OutputValueType;
  typedef itk::Vector< InputValueType,  Dimension > InputPixelType;
  typedef itk::Vector< OutputValueType, Dimension > OutputPixelType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  With them, the input and output image types can be instantiated.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Image< InputPixelType,  Dimension >   InputImageType;
  typedef itk::Image< OutputPixelType, Dimension >   OutputImageType;
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType >  ReaderType;


  //  Software Guide : BeginLatex
  //
  //  The GradientVectorFlow filter type is now instantiated using both the
  //  input image and the output image types.
  //
  //  \index{itk::GradientVectorFlowImageFilter!instantiation}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::GradientVectorFlowImageFilter<
               InputImageType, OutputImageType >  FilterType;
  // Software Guide : EndCodeSnippet


  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );


  //  Software Guide : BeginLatex
  //
  //  A filter object is created by invoking the \code{New()} method and
  //  assigning the result to a \doxygen{SmartPointer}.
  //
  //  \index{itk::GradientVectorFlowImageFilter!New()}
  //  \index{itk::GradientVectorFlowImageFilter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The input image can be obtained from the output of another filter. Here,
  //  an image reader is used as source.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetInput( reader->GetOutput() );
  // Software Guide : EndCodeSnippet


  const unsigned int numberOfIterations = atoi( argv[3] );
  const double       noiseLevel = atof( argv[4] );


  //  Software Guide : BeginLatex
  //
  //  The GradientVectorFlow filter requires two parameters, the number of
  //  iterations to be performed and the noise level of the input image. The
  //  noise level will be used to estimate the time step that should be used in
  //  the computation of the diffusion. These two parameters are set using the
  //  methods \code{SetNumberOfIterations()} and \code{SetNoiseLevel()}
  //  respectively.  Then the filter can be executed by invoking
  //  \code{Update()}.
  //
  //  \index{itk::GradientVectorFlowImageFilter!Update()}
  //  \index{itk::GradientVectorFlowImageFilter!SetNoiseLevel()}
  //  \index{itk::GradientVectorFlowImageFilter!SetNumberOfIterations()}
  //  \index{SetNoiseLevel()!itk::GradientVectorFlowImageFilter}
  //  \index{SetNumberOfIterations()!itk::GradientVectorFlowImageFilter}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetIterationNum( numberOfIterations );
  filter->SetNoiseLevel( noiseLevel );
  filter->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  When using as input the result of a gradient filter, then the typical
  //  values for the noise level will be around 2000.0.
  //
  //  Software Guide : EndLatex


  //  Software Guide : BeginLatex
  //
  //  If the output of this filter has been connected to other filters down
  //  the pipeline, updating any of the downstream filters will
  //  triggered the execution of this one. For example, a writer filter could
  //  have been used after the curvature flow filter.
  //
  //  Software Guide : EndLatex
  typedef itk::ImageFileWriter< OutputImageType >  WriterType;
  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );

  // Software Guide : BeginCodeSnippet
  writer->SetInput( filter->GetOutput() );
  writer->Update();
  // Software Guide : EndCodeSnippet


  // In order to visualize the resulting vector field you could use ParaView or
  // VV (the 4D Slicer).

  return EXIT_SUCCESS;
}