File: MeanImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (198 lines) | stat: -rw-r--r-- 6,695 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {MeanImageFilterOutput.png}
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
//
//  The \doxygen{MeanImageFilter} is commonly used for noise reduction. The
//  filter computes the value of each output pixel by finding the statistical
//  mean of the neighborhood of the corresponding input pixel.  The following
//  figure illustrates the local effect of the MeanImageFilter in a $2D$
//  case. The statistical mean of the neighborhood on the left is passed as the
//  output value associated with the pixel at the center of the neighborhood.
//
//  \begin{center}
//  \begin{picture}(200,46)
//  \put(   5.0,  0.0 ){\framebox(30.0,15.0){25}}
//  \put(  35.0,  0.0 ){\framebox(30.0,15.0){30}}
//  \put(  65.0,  0.0 ){\framebox(30.0,15.0){32}}
//  \put(   5.0, 15.0 ){\framebox(30.0,15.0){27}}
//  \put(  35.0, 15.0 ){\framebox(30.0,15.0){25}}
//  \put(  65.0, 15.0 ){\framebox(30.0,15.0){29}}
//  \put(   5.0, 30.0 ){\framebox(30.0,15.0){28}}
//  \put(  35.0, 30.0 ){\framebox(30.0,15.0){26}}
//  \put(  65.0, 30.0 ){\framebox(30.0,15.0){50}}
//  \put( 100.0, 22.0 ){\vector(1,0){20.0}}
//  \put( 125.0, 15.0 ){\framebox(34.0,15.0){30.22}}
//  \put( 160.0, 22.0 ){\vector(1,0){20.0}}
//  \put( 185.0, 15.0 ){\framebox(30.0,15.0){30}}
//  \end{picture}
//  \end{center}
//
//  Note that this algorithm is sensitive to the presence of outliers in the
//  neighborhood.  This filter will work on images of any dimension thanks to
//  the internal use of \doxygen{SmartNeighborhoodIterator} and
//  \doxygen{NeighborhoodOperator}.  The size of the neighborhood over which
//  the mean is computed can be set by the user.
//
//  \index{itk::MeanImageFilter}
//
//  Software Guide : EndLatex


#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"


//  Software Guide : BeginLatex
//
//  The header file corresponding to this filter should be included first.
//
//  \index{itk::MeanImageFilter!header}
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
#include "itkMeanImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 3 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile   outputImageFile" << std::endl;
    return EXIT_FAILURE;
    }


  //  Software Guide : BeginLatex
  //
  //  Then the pixel types for input and output image must be defined and, with
  //  them, the image types can be instantiated.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef   unsigned char  InputPixelType;
  typedef   unsigned char  OutputPixelType;

  typedef itk::Image< InputPixelType,  2 >   InputImageType;
  typedef itk::Image< OutputPixelType, 2 >   OutputImageType;
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType  >  ReaderType;
  typedef itk::ImageFileWriter< OutputImageType >  WriterType;

  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  reader->SetFileName( argv[1] );
  writer->SetFileName( argv[2] );

  //  Software Guide : BeginLatex
  //
  //  Using the image types it is now possible to instantiate the filter type
  //  and create the filter object.
  //
  //  \index{itk::MeanImageFilter!instantiation}
  //  \index{itk::MeanImageFilter!New()}
  //  \index{itk::MeanImageFilter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::MeanImageFilter<
               InputImageType, OutputImageType >  FilterType;

  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The size of the neighborhood is defined along every dimension by
  //  passing a \code{SizeType} object with the corresponding values. The
  //  value on each dimension is used as the semi-size of a rectangular
  //  box. For example, in $2D$ a size of \(1,2\) will result in a $3 \times
  //  5$ neighborhood.
  //
  //  \index{itk::MeanImageFilter!Radius}
  //  \index{itk::MeanImageFilter!Neighborhood}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  InputImageType::SizeType indexRadius;

  indexRadius[0] = 1; // radius along x
  indexRadius[1] = 1; // radius along y

  filter->SetRadius( indexRadius );
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  The input to the filter can be taken from any other filter, for example
  //  a reader. The output can be passed down the pipeline to other filters,
  //  for example, a writer. An update call on any downstream filter will
  //  trigger the execution of the mean filter.
  //
  //  \index{itk::MeanImageFilter!SetInput()}
  //  \index{itk::MeanImageFilter!GetOutput()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  filter->SetInput( reader->GetOutput() );
  writer->SetInput( filter->GetOutput() );
  writer->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
  // \includegraphics[width=0.44\textwidth]{MeanImageFilterOutput}
  // \itkcaption[Effect of the MedianImageFilter]{Effect of the MeanImageFilter on a slice
  // from a MRI proton density brain image.}
  // \label{fig:MeanImageFilterOutput}
  // \end{figure}
  //
  //  Figure \ref{fig:MeanImageFilterOutput} illustrates the effect of this
  //  filter on a slice of MRI brain image using neighborhood radii of
  //  \(1,1\) which corresponds to a $ 3 \times 3 $ classical neighborhood.
  //  It can be seen from this picture that edges are rapidly degraded by the
  //  diffusion of intensity values among neighbors.
  //
  //  Software Guide : EndLatex


  return EXIT_SUCCESS;
}