File: MinMaxCurvatureFlowImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (266 lines) | stat: -rw-r--r-- 10,156 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {MinMaxCurvatureFlowImageFilterOutput.png}
//    ARGUMENTS:    10 0.125 1
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
//
//
// \begin{figure}
// \center
// \includegraphics[width=0.5\textwidth]{MinMaxCurvatureFlowFunctionDiagram}
// \itkcaption[MinMaxCurvatureFlow computation]{Elements involved in the
//  computation of min-max curvature flow.}
// \label{fig:MinMaxCurvatureFlowFunctionDiagram}
// \end{figure}
//
//  The MinMax curvature flow filter applies a variant of the curvature flow
//  algorithm where diffusion is turned on or off depending of the scale of the
//  noise that one wants to remove.  The evolution speed is switched between
//  $\min(\kappa,0)$ and $\max(\kappa,0)$ such that:
//
//  \begin{equation}
//  I_t = F |\nabla I|
//  \end{equation}
//
//  where $F$ is defined as
//
//  \begin{equation}
//  F = \left\{ \begin{array} {r@{\quad:\quad}l}
//         \max(\kappa,0) & \mbox{Average} < Threshold \\ \min(\kappa,0) & \mbox{Average} \ge Threshold
//             \end{array} \right.
//  \end{equation}
//
// The $Average$ is the average intensity computed over a neighborhood of a
// user-specified radius of the pixel. The choice of the radius governs the
// scale of the noise to be removed. The $Threshold$ is calculated as the
// average of pixel intensities along the direction perpendicular to the
// gradient at the \emph{extrema} of the local neighborhood.
//
// A speed of $F = max(\kappa,0)$ will cause small dark regions in a
// predominantly light region to shrink.  Conversely, a speed of $F =
// min(\kappa,0)$, will cause light regions in a predominantly dark region to
// shrink. Comparison between the neighborhood average and the threshold is
// used to select the the right speed function to use. This switching
// prevents the unwanted diffusion of the simple curvature flow method.
//
// Figure~\ref{fig:MinMaxCurvatureFlowFunctionDiagram} shows the main
// elements involved in the computation. The set of square pixels represent
// the neighborhood over which the average intensity is being computed. The
// gray pixels are those lying close to the direction perpendicular to the
// gradient.  The pixels which intersect the neighborhood bounds are used to
// compute the threshold value in the equation above. The integer radius of
// the neighborhood is selected by the user.
//
//  \index{itk::MinMax\-Curvature\-Flow\-Image\-Filter}
//
//  Software Guide : EndLatex


#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

//  Software Guide : BeginLatex
//
//  The first step required to use the \doxygen{MinMaxCurvatureFlowImageFilter}
//  is to include its header file.
//
//  \index{itk::MinMax\-Curvature\-Flow\-Image\-Filter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkMinMaxCurvatureFlowImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 6 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile  outputImageFile  ";
    std::cerr << "numberOfIterations  timeStep  stencilRadius" << std::endl;
    return EXIT_FAILURE;
    }
  //  Software Guide : BeginLatex
  //
  //  Types should be selected based on the pixel types required for the
  //  input and output images. The input and output image types are
  //  instantiated.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef    float    InputPixelType;
  typedef    float    OutputPixelType;

  typedef itk::Image< InputPixelType,  2 >   InputImageType;
  typedef itk::Image< OutputPixelType, 2 >   OutputImageType;
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType >  ReaderType;


  //  Software Guide : BeginLatex
  //
  //  The \doxygen{MinMaxCurvatureFlowImageFilter} type is now instantiated
  //  using both the input image and the output image types. The filter is
  //  then created using the \code{New()} method.
  //
  //  \index{itk::MinMax\-Curvature\-Flow\-Image\-Filter!instantiation}
  //  \index{itk::MinMax\-Curvature\-Flow\-Image\-Filter!New()}
  //  \index{itk::MinMax\-Curvature\-Flow\-Image\-Filter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::MinMaxCurvatureFlowImageFilter<
               InputImageType, OutputImageType >  FilterType;
  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet


  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );


  //  Software Guide : BeginLatex
  //
  //  The input image can be obtained from the output of another filter. Here,
  //  an image reader is used as source.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetInput( reader->GetOutput() );
  // Software Guide : EndCodeSnippet


  const unsigned int numberOfIterations = atoi( argv[3] );
  const double       timeStep = atof( argv[4] );
  typedef FilterType::RadiusValueType RadiusType;
  const RadiusType radius = atol( argv[5] );

  //  Software Guide : BeginLatex
  //
  //  The \doxygen{MinMaxCurvatureFlowImageFilter} requires the two normal
  //  parameters of the CurvatureFlow image, the number of iterations to be
  //  performed and the time step used in the computation of the level set
  //  evolution. In addition, the radius of the neighborhood is also
  //  required. This last parameter is passed using the
  //  \code{SetStencilRadius()} method. Note that the radius is provided as an
  //  integer number since it is referring to a number of pixels from the center
  //  to the border of the neighborhood. Then the filter can be executed by
  //  invoking \code{Update()}.
  //
  //  \index{itk::MinMax\-Curvature\-Flow\-Image\-Filter!Update()}
  //  \index{itk::MinMax\-Curvature\-Flow\-Image\-Filter!SetTimeStep()}
  //  \index{itk::MinMax\-Curvature\-Flow\-Image\-Filter!SetNumberOfIterations()}
  //  \index{SetTimeStep()!itk::MinMax\-Curvature\-Flow\-Image\-Filter}
  //  \index{SetNumberOfIterations()!itk::MinMax\-Curvature\-Flow\-Image\-Filter}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetTimeStep( timeStep );
  filter->SetNumberOfIterations( numberOfIterations );
  filter->SetStencilRadius( radius );
  filter->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Typical values for the time step are $0.125$ in $2D$ images and
  //  $0.0625$ in $3D$ images. The number of iterations can be usually around
  //  $10$, more iterations will result in further smoothing and will
  //  increase the computing time linearly. The radius of the stencil can be
  //  typically $1$. The \emph{edge-preserving} characteristic is not perfect
  //  on this filter. Some degradation will occur on the edges and will
  //  increase as the number of iterations is increased.
  //
  //  Software Guide : EndLatex


  //  Software Guide : BeginLatex
  //
  //  If the output of this filter has been connected to other filters down
  //  the pipeline, updating any of the downstream filters will
  //  trigger the execution of this one. For example, a writer filter can
  //  be used after the curvature flow filter.
  //
  //  Software Guide : EndLatex

  typedef unsigned char                          WritePixelType;
  typedef itk::Image< WritePixelType, 2 >        WriteImageType;
  typedef itk::RescaleIntensityImageFilter<
               OutputImageType, WriteImageType > RescaleFilterType;
  RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
  rescaler->SetOutputMinimum(   0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< WriteImageType >  WriterType;
  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );

  // Software Guide : BeginCodeSnippet
  rescaler->SetInput( filter->GetOutput() );
  writer->SetInput( rescaler->GetOutput() );
  writer->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
  // \includegraphics[width=0.44\textwidth]{MinMaxCurvatureFlowImageFilterOutput}
  // \itkcaption[MinMaxCurvatureFlowImageFilter output]{Effect of the
  // MinMaxCurvatureFlowImageFilter on a slice from a MRI proton density image
  // of the brain.}
  // \label{fig:MinMaxCurvatureFlowImageFilterInputOutput}
  // \end{figure}
  //
  //  Figure \ref{fig:MinMaxCurvatureFlowImageFilterInputOutput} illustrates
  //  the effect of this filter on a MRI proton density image of the
  //  brain. In this example the filter was run with a time step of $0.125$,
  //  $10$ iterations and a radius of $1$.  The figure shows how homogeneous
  //  regions are smoothed and edges are preserved. Notice also, that the
  //  result in the figure has sharper edges than the same example using
  //  simple curvature flow in Figure
  //  \ref{fig:CurvatureFlowImageFilterInputOutput}.
  //
  //  \relatedClasses
  //  \begin{itemize}
  //  \item \doxygen{CurvatureFlowImageFilter}
  //  \end{itemize}
  //
  //
  //  Software Guide : EndLatex

  return EXIT_SUCCESS;
}