1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of Mathematical Morphology filters for
// image enhancement. One of the difficulties of image enhancement is that it
// is defined based on human visual perception and it is related to a
// particular set of features that are of interest in the image. In this
// context, what is considered enhancement for one person, may be seen as
// image degradation by another person.
//
// \index{itk::AntiAliasBinaryImageFilter|textbf}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImage.h"
#include "itkPNGImageIO.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkGrayscaleMorphologicalOpeningImageFilter.h"
#include "itkGrayscaleMorphologicalClosingImageFilter.h"
#include "itkBinaryBallStructuringElement.h"
#include "itkConstrainedValueAdditionImageFilter.h"
#include "itkConstrainedValueDifferenceImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
int main( int argc, char * argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile ";
std::cerr << " outputImageFile radius " << std::endl;
return EXIT_FAILURE;
}
//
// The following code defines the input and output pixel types and their
// associated image types.
//
const unsigned int Dimension = 2;
typedef unsigned char PixelType;
typedef unsigned char WritePixelType;
typedef itk::Image< PixelType, Dimension > ImageType;
typedef itk::Image< WritePixelType, Dimension > WriteImageType;
// readers/writers
typedef itk::ImageFileReader< ImageType > ReaderType;
typedef itk::ImageFileWriter< WriteImageType > WriterType;
// structuring element
typedef itk::BinaryBallStructuringElement<
PixelType, Dimension > StructuringElementType;
// define the opening and closing types
typedef itk::GrayscaleMorphologicalOpeningImageFilter<
ImageType, ImageType, StructuringElementType > OpeningFilterType;
typedef itk::GrayscaleMorphologicalClosingImageFilter<
ImageType, ImageType, StructuringElementType > ClosingFilterType;
// define arithmetic operation filters
typedef itk::ConstrainedValueAdditionImageFilter<
ImageType, ImageType, ImageType > AdditionFilterType;
typedef itk::ConstrainedValueDifferenceImageFilter<
ImageType, ImageType, ImageType > SubtractionFilterType;
// define rescaling filter
typedef itk::RescaleIntensityImageFilter<
ImageType, WriteImageType> RescaleFilterType;
// Create structuring element
StructuringElementType structuringElement;
// (argv[3]+1) x (argv[3]+1) structuring element
structuringElement.SetRadius( atoi(argv[3]) );
structuringElement.CreateStructuringElement();
// Setup the input and output files
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
// reading input image
try
{
reader->Update();
}
catch ( itk::ExceptionObject &err)
{
std::cout << "Problems reading input image" << std::endl;
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Create the opening closing filters
OpeningFilterType::Pointer opening = OpeningFilterType::New();
ClosingFilterType::Pointer closing = ClosingFilterType::New();
// Setup the opening and closing methods
opening->SetKernel( structuringElement );
closing->SetKernel( structuringElement );
// Setup minnimum and maximum of rescale filter
RescaleFilterType::Pointer rescaleFilter = RescaleFilterType::New();
rescaleFilter->SetOutputMinimum( 0 );
rescaleFilter->SetOutputMaximum( 255 );
// creation of the pipeline. The enhancement operation is given by:
// Original Image + Top Hat Image - Bottom Hat Image
opening->SetInput( reader->GetOutput() );
closing->SetInput( reader->GetOutput() );
SubtractionFilterType::Pointer topHat = SubtractionFilterType::New();
topHat->SetInput1( reader->GetOutput() );
topHat->SetInput2( opening->GetOutput() );
SubtractionFilterType::Pointer bottomHat = SubtractionFilterType::New();
bottomHat->SetInput1( closing->GetOutput() );
bottomHat->SetInput2( reader->GetOutput() );
AdditionFilterType::Pointer internalAddition = AdditionFilterType::New();
internalAddition->SetInput1( reader->GetOutput() );
internalAddition->SetInput2( topHat->GetOutput() );
SubtractionFilterType::Pointer imageEnhancement =
SubtractionFilterType::New();
imageEnhancement->SetInput1( internalAddition->GetOutput() );
imageEnhancement->SetInput2( bottomHat->GetOutput() );
rescaleFilter->SetInput( imageEnhancement->GetOutput() );
writer->SetInput( rescaleFilter->GetOutput() );
try
{
writer->Update();
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err <<std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|