File: RGBCurvatureAnisotropicDiffusionImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (243 lines) | stat: -rw-r--r-- 9,105 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//  INPUTS:  {VisibleWomanHeadSlice.png}
//  OUTPUTS: {RGBCurvatureAnisotropicDiffusionImageFilterOutput.png}
//  ARGUMENTS:    20 0.125
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
//
//  The vector anisotropic diffusion approach can be applied equally well to
//  color images. As in the vector case, each RGB component is diffused
//  independently. The following example illustrates the use of the
//  \doxygen{VectorCurvatureAnisotropicDiffusionImageFilter} on an image with
//  \doxygen{RGBPixel} type.
//
//  \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!RGB Images}
//
//  Software Guide : EndLatex


//  Software Guide : BeginLatex
//
//  The first step required to use this filter is to include its header file.
//
//  \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  Also the headers for \code{Image} and \code{RGBPixel} type are required.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkRGBPixel.h"
#include "itkImage.h"
// Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  It is desirable to perform the computation on the RGB image using
//  \code{float} representation. However for input and output purposes
//  \code{unsigned char} RGB components are commonly used. It is necessary to
//  cast the type of color components in the pipeline before writing them to
//  a file. The \doxygen{VectorCastImageFilter} is used to achieve this goal.
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkVectorCastImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 5 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputRGBImageFile  outputRGBImageFile ";
    std::cerr << "numberOfIterations  timeStep  " << std::endl;
    return EXIT_FAILURE;
    }


  //  Software Guide : BeginLatex
  //
  //  The image type is defined using the pixel type and the dimension.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::RGBPixel< float >          InputPixelType;
  typedef itk::Image< InputPixelType, 2 > InputImageType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The filter type is now instantiated and a filter object is created by the
  //  \code{New()} method.
  //
  //  \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!instantiation}
  //  \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!New()}
  //  \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::VectorCurvatureAnisotropicDiffusionImageFilter<
                       InputImageType, InputImageType >  FilterType;
  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The input image can be obtained from the output of another
  //  filter. Here, an image reader is used as a source.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::ImageFileReader< InputImageType >  ReaderType;
  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );
  filter->SetInput( reader->GetOutput() );
  // Software Guide : EndCodeSnippet


  const unsigned int numberOfIterations = atoi( argv[3] );
  const double       timeStep = atof( argv[4] );


  //  Software Guide : BeginLatex
  //
  //  This filter requires two parameters: the number of iterations to be
  //  performed and the time step used in the computation of the level set
  //  evolution. These parameters are set using the methods
  //  \code{SetNumberOfIterations()} and \code{SetTimeStep()} respectively.  The filter can
  //  be executed by invoking \code{Update()}.
  //
  //  \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Update()}
  //  \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetTimeStep()}
  //  \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetNumberOfIterations()}
  //  \index{SetTimeStep()!itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
  //  \index{SetNumberOfIterations()!itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetNumberOfIterations( numberOfIterations );
  filter->SetTimeStep( timeStep );
  filter->SetConductanceParameter(1.0);
  filter->Update();
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  The filter output is now cast to \code{unsigned char} RGB components by
  //  using the \doxygen{VectorCastImageFilter}.
  //
  //  \index{itk::VectorCastImageFilter!instantiation}
  //  \index{itk::VectorCastImageFilter!New()}
  //  \index{itk::VectorCastImageFilter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::RGBPixel< unsigned char >   WritePixelType;
  typedef itk::Image< WritePixelType, 2 >  WriteImageType;
  typedef itk::VectorCastImageFilter<
                InputImageType, WriteImageType >  CasterType;
  CasterType::Pointer caster = CasterType::New();
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Finally, the writer type can be instantiated. One writer is created and
  //  connected to the output of the cast filter.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::ImageFileWriter< WriteImageType >  WriterType;
  WriterType::Pointer writer = WriterType::New();
  caster->SetInput( filter->GetOutput() );
  writer->SetInput( caster->GetOutput() );
  writer->SetFileName( argv[2] );
  writer->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  // \begin{figure} \center
  // \includegraphics[width=0.44\textwidth]{VisibleWomanHeadSlice}
  // \includegraphics[width=0.44\textwidth]{RGBCurvatureAnisotropicDiffusionImageFilterOutput}
  // \itkcaption[VectorCurvatureAnisotropicDiffusionImageFilter output on RGB]
  // {Effect of the VectorCurvatureAnisotropicDiffusionImageFilter on a RGB
  // image from a cryogenic section of the Visible Woman data set.}
  // \label{fig:RGBVectorCurvatureAnisotropicDiffusionImageFilterInputOutput}
  // \end{figure}
  //
  //  Figure
  //  \ref{fig:RGBVectorCurvatureAnisotropicDiffusionImageFilterInputOutput}
  //  illustrates the effect of this filter on a RGB image from a cryogenic
  //  section of the Visible Woman data set.  In this example the filter was
  //  run with a time step of $0.125$, and $20$ iterations.  The input image
  //  has $570 \times 670$ pixels and the processing took $4$ minutes on a
  //  Pentium 4 at 2GHz.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginLatex
  //
  // \begin{figure} \center
  // \includegraphics[width=0.32\textwidth]{VisibleWomanEyeSlice}
  // \includegraphics[width=0.32\textwidth]{RGBGradientAnisotropicDiffusionImageFilterOutput2}
  // \includegraphics[width=0.32\textwidth]{RGBCurvatureAnisotropicDiffusionImageFilterOutput2}
  // \itkcaption[Various Anisotropic Diffusion compared] {Comparison between
  // the gradient (center) and curvature (right) Anisotropic Diffusion filters.
  // Original image at left.}
  // \label{fig:ComparisionGradientCurvatureRGBAnisotropicDiffusion}
  // \end{figure}
  //
  //  Figure \ref{fig:ComparisionGradientCurvatureRGBAnisotropicDiffusion}
  //  compares the effect of the gradient and curvature anisotropic diffusion
  //  filters on a small region of the same cryogenic slice used in Figure
  //  \ref{fig:RGBVectorCurvatureAnisotropicDiffusionImageFilterInputOutput}.
  //  The region used in this figure is only  $127 \times 162$ pixels and took
  //  $14$ seconds to compute on the same platform.
  //
  //  Software Guide : EndLatex

  return EXIT_SUCCESS;
}