1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {VisibleWomanHeadSlice.png}
// OUTPUTS: {RGBCurvatureAnisotropicDiffusionImageFilterOutput.png}
// ARGUMENTS: 20 0.125
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The vector anisotropic diffusion approach can be applied equally well to
// color images. As in the vector case, each RGB component is diffused
// independently. The following example illustrates the use of the
// \doxygen{VectorCurvatureAnisotropicDiffusionImageFilter} on an image with
// \doxygen{RGBPixel} type.
//
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!RGB Images}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The first step required to use this filter is to include its header file.
//
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Also the headers for \code{Image} and \code{RGBPixel} type are required.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkRGBPixel.h"
#include "itkImage.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// It is desirable to perform the computation on the RGB image using
// \code{float} representation. However for input and output purposes
// \code{unsigned char} RGB components are commonly used. It is necessary to
// cast the type of color components in the pipeline before writing them to
// a file. The \doxygen{VectorCastImageFilter} is used to achieve this goal.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkVectorCastImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 5 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputRGBImageFile outputRGBImageFile ";
std::cerr << "numberOfIterations timeStep " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The image type is defined using the pixel type and the dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RGBPixel< float > InputPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filter type is now instantiated and a filter object is created by the
// \code{New()} method.
//
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!instantiation}
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!New()}
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::VectorCurvatureAnisotropicDiffusionImageFilter<
InputImageType, InputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another
// filter. Here, an image reader is used as a source.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
filter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
const unsigned int numberOfIterations = atoi( argv[3] );
const double timeStep = atof( argv[4] );
// Software Guide : BeginLatex
//
// This filter requires two parameters: the number of iterations to be
// performed and the time step used in the computation of the level set
// evolution. These parameters are set using the methods
// \code{SetNumberOfIterations()} and \code{SetTimeStep()} respectively. The filter can
// be executed by invoking \code{Update()}.
//
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Update()}
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetTimeStep()}
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetNumberOfIterations()}
// \index{SetTimeStep()!itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
// \index{SetNumberOfIterations()!itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetNumberOfIterations( numberOfIterations );
filter->SetTimeStep( timeStep );
filter->SetConductanceParameter(1.0);
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filter output is now cast to \code{unsigned char} RGB components by
// using the \doxygen{VectorCastImageFilter}.
//
// \index{itk::VectorCastImageFilter!instantiation}
// \index{itk::VectorCastImageFilter!New()}
// \index{itk::VectorCastImageFilter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RGBPixel< unsigned char > WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::VectorCastImageFilter<
InputImageType, WriteImageType > CasterType;
CasterType::Pointer caster = CasterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the writer type can be instantiated. One writer is created and
// connected to the output of the cast filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
caster->SetInput( filter->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->SetFileName( argv[2] );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{VisibleWomanHeadSlice}
// \includegraphics[width=0.44\textwidth]{RGBCurvatureAnisotropicDiffusionImageFilterOutput}
// \itkcaption[VectorCurvatureAnisotropicDiffusionImageFilter output on RGB]
// {Effect of the VectorCurvatureAnisotropicDiffusionImageFilter on a RGB
// image from a cryogenic section of the Visible Woman data set.}
// \label{fig:RGBVectorCurvatureAnisotropicDiffusionImageFilterInputOutput}
// \end{figure}
//
// Figure
// \ref{fig:RGBVectorCurvatureAnisotropicDiffusionImageFilterInputOutput}
// illustrates the effect of this filter on a RGB image from a cryogenic
// section of the Visible Woman data set. In this example the filter was
// run with a time step of $0.125$, and $20$ iterations. The input image
// has $570 \times 670$ pixels and the processing took $4$ minutes on a
// Pentium 4 at 2GHz.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.32\textwidth]{VisibleWomanEyeSlice}
// \includegraphics[width=0.32\textwidth]{RGBGradientAnisotropicDiffusionImageFilterOutput2}
// \includegraphics[width=0.32\textwidth]{RGBCurvatureAnisotropicDiffusionImageFilterOutput2}
// \itkcaption[Various Anisotropic Diffusion compared] {Comparison between
// the gradient (center) and curvature (right) Anisotropic Diffusion filters.
// Original image at left.}
// \label{fig:ComparisionGradientCurvatureRGBAnisotropicDiffusion}
// \end{figure}
//
// Figure \ref{fig:ComparisionGradientCurvatureRGBAnisotropicDiffusion}
// compares the effect of the gradient and curvature anisotropic diffusion
// filters on a small region of the same cryogenic slice used in Figure
// \ref{fig:RGBVectorCurvatureAnisotropicDiffusionImageFilterInputOutput}.
// The region used in this figure is only $127 \times 162$ pixels and took
// $14$ seconds to compute on the same platform.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|