File: ResampleImageFilter2.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (536 lines) | stat: -rw-r--r-- 18,534 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  During the computation of the resampled image all the pixels in the
//  output region are visited. This visit is performed using
//  \code{ImageIterators} which walk in the integer grid-space of the
//  image. For each pixel, we need to convert grid position to space
//  coordinates using the image spacing and origin.
//
//  For example, the pixel of index $I=(20,50)$ in an image of origin
//  $O=(19.0, 29.0)$ and pixel spacing $S=(1.3,1.5)$ corresponds to the
//  spatial position
//
//  \begin{equation}
//  P[i] = I[i] \times S[i] + O[i]
//  \end{equation}
//
//  which in this case leads to $P=( 20 \times 1.3 + 19.0, 50 \times 1.5 +
//  29.0 )$ and finally $P=(45.0, 104.0)$
//
//  The space coordinates of $P$ are mapped using the transform $T$ supplied
//  to the \doxygen{ResampleImageFilter} in order to map the point $P$ to the
//  input image space point $Q = T(P)$.
//
//  The whole process is illustrated in Figure
//  \ref{fig:ResampleImageFilterTransformComposition1}. In order to correctly
//  interpret the process of the ResampleImageFilter you should be aware of the
//  origin and spacing settings of both the input and output images.
//
//  \index{itk::ResampleImageFilter!Image internal transform}
//
//  Software Guide : EndLatex


#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkAffineTransform.h"
#include "itkNearestNeighborInterpolateImageFunction.h"


int main( int argc, char * argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile  outputImageFile";
    std::cerr << "  [exampleAction={0,1,2,3,4}]" << std::endl;
    return EXIT_FAILURE;
    }

  int exampleAction = 0;

  if( argc >= 4 )
    {
    exampleAction = atoi( argv[3] );
    }

  const     unsigned int   Dimension = 2;
  typedef   unsigned char  InputPixelType;
  typedef   unsigned char  OutputPixelType;

  typedef itk::Image< InputPixelType,  Dimension >   InputImageType;
  typedef itk::Image< OutputPixelType, Dimension >   OutputImageType;


  typedef itk::ImageFileReader< InputImageType  >  ReaderType;
  typedef itk::ImageFileWriter< OutputImageType >  WriterType;

  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  reader->SetFileName( argv[1] );
  writer->SetFileName( argv[2] );


  typedef itk::ResampleImageFilter<
                  InputImageType, OutputImageType >  FilterType;

  FilterType::Pointer filter = FilterType::New();
  typedef itk::AffineTransform< double, Dimension >  TransformType;
  TransformType::Pointer transform = TransformType::New();

  typedef itk::NearestNeighborInterpolateImageFunction<
                       InputImageType, double >  InterpolatorType;
  InterpolatorType::Pointer interpolator = InterpolatorType::New();
  filter->SetInterpolator( interpolator );


  //  Software Guide : BeginLatex
  //
  //  In order to facilitate the interpretation of the transform we set the
  //  default pixel value to a value distinct from the image background.
  //
  //  \index{itk::ResampleImageFilter!SetDefaultPixelValue()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetDefaultPixelValue( 50 );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Let's set up a uniform spacing for the output image.
  //
  //  \index{itk::ResampleImageFilter!SetOutputSpacing()}
  //
  //  Software Guide : EndLatex

    {
    // Software Guide : BeginCodeSnippet
    // pixel spacing in millimeters along X & Y
    const double spacing[ Dimension ] = { 1.0, 1.0 };
    filter->SetOutputSpacing( spacing );
    // Software Guide : EndCodeSnippet
    }

  //  Software Guide : BeginLatex
  //
  //  We will preserve the orientation of the input image by using the following call.
  //
  //  \index{itk::ResampleImageFilter!SetOutputOrigin()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetOutputDirection( reader->GetOutput()->GetDirection() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Additionally, we will specify a non-zero origin. Note that the values
  //  provided here will be those of the space coordinates for the pixel of
  //  index $(0,0)$.
  //
  //  \index{itk::ResampleImageFilter!SetOutputOrigin()}
  //
  //  Software Guide : EndLatex

    {
    // Software Guide : BeginCodeSnippet
    // space coordinate of origin
    const double origin[ Dimension ] = { 30.0, 40.0 };
    filter->SetOutputOrigin( origin );
    // Software Guide : EndCodeSnippet
    }


  InputImageType::SizeType   size;

  size[0] = 300;  // number of pixels along X
  size[1] = 300;  // number of pixels along Y
  filter->SetSize( size );

  filter->SetInput( reader->GetOutput() );
  writer->SetInput( filter->GetOutput() );


  //  Software Guide : BeginLatex
  //
  //  We set the transform to identity in order to better appreciate the
  //  effect of the origin selection.
  //
  //  \index{itk::AffineTransform!SetIdentity()}
  //  \index{itk::ResampleImageFilter!SetTransform()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  transform->SetIdentity();
  filter->SetTransform( transform );
  // Software Guide : EndCodeSnippet


  if( exampleAction == 0 )
    {
    writer->Update();
    }

  //  Software Guide : BeginLatex
  //
  //  The output resulting from these filter settings is analyzed in Figure
  //  \ref{fig:ResampleImageFilterTransformComposition1}.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=\textwidth]{ResampleImageFilterTransformComposition1}
  // \itkcaption[ResampleImageFilter selecting the origin of the output
  // image]{ResampleImageFilter selecting the origin of the output image.}
  // \label{fig:ResampleImageFilterTransformComposition1}
  // \end{figure}
  //
  //  In the figure, the output image point with index $I=(0,0)$ has space
  //  coordinates $P=(30,40)$.  The identity transform maps this point to
  //  $Q=(30,40)$ in the input image space. Because the input image in this
  //  case happens to have spacing $(1.0,1.0)$ and origin $(0.0,0.0)$, the
  //  physical point $Q=(30,40)$ maps to the pixel with index $I=(30,40)$.
  //
  //  Software Guide : EndLatex


  //  Software Guide : BeginLatex
  //
  //  The code for a different selection of origin and image size is
  //  illustrated below.  The resulting output is presented in Figure
  //  \ref{fig:ResampleImageFilterTransformComposition2}.
  //
  //  \index{itk::ResampleImageFilter!SetSize()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  size[0] = 150;  // number of pixels along X
  size[1] = 200;  // number of pixels along Y
  filter->SetSize( size );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  \index{itk::ResampleImageFilter!SetOutputOrigin()}
  //
  //  Software Guide : EndLatex

    {
    // Software Guide : BeginCodeSnippet
    // space coordinate of origin
    const double origin[ Dimension ] = { 60.0, 30.0 };
    filter->SetOutputOrigin( origin );
    // Software Guide : EndCodeSnippet
    }


  if( exampleAction == 1 )
    {
    writer->Update();
    }


  //  Software Guide : BeginLatex
  //
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=\textwidth]{ResampleImageFilterTransformComposition2}
  // \itkcaption[ResampleImageFilter origin in the output
  // image]{ResampleImageFilter origin in the output image.}
  // \label{fig:ResampleImageFilterTransformComposition2}
  // \end{figure}
  //
  //  The output image point with index $I=(0,0)$ now has space coordinates
  //  $P=(60,30)$.  The identity transform maps this point to $Q=(60,30)$ in
  //  the input image space. Because the input image in this case happens to
  //  have spacing $(1.0,1.0)$ and origin $(0.0,0.0)$, the physical point
  //  $Q=(60,30)$ maps to the pixel with index $I=(60,30)$.
  //
  //  Software Guide : EndLatex


  //  Software Guide : BeginLatex
  //
  //  Let's now analyze the effect of a non-zero origin in the input image.
  //  Keeping the output image settings of the previous example, we modify
  //  only the origin values on the file header of the input image. The new
  //  origin assigned to the input image is $O=(50,70)$. An identity
  //  transform is still used as input for the ResampleImageFilter. The
  //  result of executing the filter with these parameters is presented in
  //  Figure \ref{fig:ResampleImageFilterTransformComposition3}.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=\textwidth]{ResampleImageFilterTransformComposition3}
  // \itkcaption[ResampleImageFilter selecting the origin of the input
  // image]{Effect of selecting the origin of the input
  // image with ResampleImageFilter.} \label{fig:ResampleImageFilterTransformComposition3}
  // \end{figure}
  //
  //  The pixel with index $I=(56,120)$ on the output image has coordinates
  //  $P=(116,150)$ in physical space. The identity transform maps $P$ to the
  //  point $Q=(116,150)$ on the input image space. The coordinates of $Q$ are
  //  associated with the pixel of index $I=(66,80)$ on the input image.
  //
  //  Software Guide : EndLatex


  if( exampleAction == 2 )
    {
    writer->Update();
    }


  //  Software Guide : BeginLatex
  //
  //  Now consider the effect of the output spacing on the process of image
  //  resampling.  In order to simplify the analysis, let's set the origin
  //  back to zero in both the input and output images.
  //
  //  \index{itk::ResampleImageFilter!SetOutputOrigin()}
  //
  //  Software Guide : EndLatex

    {
    // Software Guide : BeginCodeSnippet
    // space coordinate of origin
    const double origin[ Dimension ] = { 0.0, 0.0 };
    filter->SetOutputOrigin( origin );
    // Software Guide : EndCodeSnippet
    }

  //  Software Guide : BeginLatex
  //
  //  We then specify a non-unit spacing for the output image.
  //
  //  \index{itk::ResampleImageFilter!SetOutputSpacing()}
  //
  //  Software Guide : EndLatex

    {
    // Software Guide : BeginCodeSnippet
    // pixel spacing in millimeters
    const double spacing[ Dimension ] = { 2.0, 3.0 };
    filter->SetOutputSpacing( spacing );
    // Software Guide : EndCodeSnippet
    }

  //  Software Guide : BeginLatex
  //
  //  Additionally, we reduce the output image extent, since the new pixels
  //  are now covering a larger area of $2.0\mbox{mm} \times 3.0\mbox{mm}$.
  //
  //  \index{itk::ResampleImageFilter!SetSize()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  size[0] = 80;  // number of pixels along X
  size[1] = 50;  // number of pixels along Y
  filter->SetSize( size );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  With these new parameters the physical extent of the output image is
  //  $160$ millimeters by $150$ millimeters.
  //
  //  Software Guide : EndLatex


  //  Software Guide : BeginLatex
  //
  //  Before attempting to analyze the effect of the resampling image filter
  //  it is important to make sure that the image viewer used to display the
  //  input and output images takes the spacing into account and
  //  appropriately scales the images on the screen. Please note that images
  //  in formats like PNG are not capable of representing origin and
  //  spacing. The toolkit assumes trivial default values for them. Figure
  //  \ref{fig:ResampleImageFilterOutput7} (center) illustrates the effect of
  //  using a naive viewer that does not take pixel spacing into account. A
  //  correct display is presented at the right in the same figure\footnote{A
  //  viewer is provided with ITK under the name of MetaImageViewer. This
  //  viewer takes into account pixel spacing.}.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.32\textwidth]{BrainProtonDensitySlice}
  // \includegraphics[width=0.32\textwidth]{ResampleImageFilterOutput7}
  // \includegraphics[width=0.32\textwidth]{ResampleImageFilterOutput7b}
  // \itkcaption[ResampleImageFilter use of naive viewers]{Resampling with
  // different spacing seen by a naive viewer (center) and a correct viewer
  // (right), input image (left).}
  // \label{fig:ResampleImageFilterOutput7}
  // \end{figure}
  //
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=\textwidth]{ResampleImageFilterTransformComposition4}
  // \itkcaption[ResampleImageFilter and output image spacing]{Effect of selecting
  // the spacing on the output image.}
  // \label{fig:ResampleImageFilterTransformComposition4}
  // \end{figure}
  //
  // The filter output is analyzed in a common coordinate system with the
  // input from Figure \ref{fig:ResampleImageFilterTransformComposition4}. In
  // this figure, pixel $I=(33,27)$ of the output image is located at
  // coordinates $P=(66.0,81.0)$ of the physical space. The identity
  // transform maps this point to $Q=(66.0,81.0)$ in the input image physical
  // space. The point $Q$ is then associated to the pixel of index
  // $I=(66,81)$ on the input image, because this image has zero origin and
  // unit spacing.
  //
  //  Software Guide : EndLatex

  if( exampleAction == 3 )
    {
    writer->Update();
    }


  //  Software Guide : BeginLatex
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.42\textwidth]{BrainProtonDensitySlice2x3}
  // \includegraphics[width=0.42\textwidth]{BrainProtonDensitySlice2x3b}
  // \itkcaption[ResampleImageFilter naive viewers]{Input image with $2 \times
  //  3 \mbox{mm}$ spacing as seen with a naive viewer (left) and a correct
  //  viewer (right).\label{fig:ResampleImageFilterInput2}}
  // \end{figure}
  //
  //  The input image spacing is also an important factor in the process of
  //  resampling an image. The following example illustrates the effect of
  //  non-unit pixel spacing on the input image. An input image similar to
  //  the those used in Figures
  //  \ref{fig:ResampleImageFilterTransformComposition1} to
  //  \ref{fig:ResampleImageFilterTransformComposition4} has been
  //  resampled to have pixel spacing of $2\mbox{mm} \times 3\mbox{mm}$. The
  //  input image is presented in Figure \ref{fig:ResampleImageFilterInput2}
  //  as viewed with a naive image viewer (left) and with a correct image
  //  viewer (right).
  //
  //  The following code is used to transform this non-unit spacing input image
  //  into another non-unit spacing image located at a non-zero origin. The
  //  comparison between input and output in a common reference system is
  //  presented in figure \ref{fig:ResampleImageFilterTransformComposition5}.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginLatex
  //
  //  Here we start by selecting the origin of the output image.
  //
  //  \index{itk::ResampleImageFilter!SetOutputOrigin()}
  //
  //  Software Guide : EndLatex

    {
    // Software Guide : BeginCodeSnippet
    // space coordinate of origin
    const double origin[ Dimension ] = { 25.0, 35.0 };
    filter->SetOutputOrigin( origin );
    // Software Guide : EndCodeSnippet
    }

  //  Software Guide : BeginLatex
  //
  //  We then select the number of pixels along each dimension.
  //
  //  \index{itk::ResampleImageFilter!SetSize()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  size[0] = 40;  // number of pixels along X
  size[1] = 45;  // number of pixels along Y
  filter->SetSize( size );
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Finally, we set the output pixel spacing.
  //
  //  \index{itk::ResampleImageFilter!SetOutputSpacing()}
  //
  //  Software Guide : EndLatex

    {
    // Software Guide : BeginCodeSnippet
    const double spacing[ Dimension ] = { 4.0, 4.5 };
    filter->SetOutputSpacing( spacing );
    // Software Guide : EndCodeSnippet
    }

  if( exampleAction == 4 )
    {
    writer->Update();
    }


  //  Software Guide : BeginLatex
  //
  // Figure \ref{fig:ResampleImageFilterTransformComposition5} shows the
  // analysis of the filter output under these conditions. First, notice that
  // the origin of the output image corresponds to the settings
  // $O=(25.0,35.0)$ millimeters, spacing $(4.0,4.5)$ millimeters and size
  // $(40,45)$ pixels.  With these parameters the pixel of index $I=(10,10)$
  // in the output image is associated with the spatial point of coordinates
  // $P=(10 \times 4.0 + 25.0, 10 \times 4.5 + 35.0)) =(65.0,80.0)$. This
  // point is mapped by the transform---identity in this particular case---to
  // the point $Q=(65.0,80.0)$ in the input image space. The point $Q$ is
  // then associated with the pixel of index $I=( ( 65.0 - 0.0 )/2.0 - (80.0
  // - 0.0)/3.0) =(32.5,26.6)$. Note that the index does not fall on a grid
  // position. For this reason the value to be assigned to the output pixel
  // is computed by interpolating values on the input image around the
  // non-integer index $I=(32.5,26.6)$.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=\textwidth]{ResampleImageFilterTransformComposition5}
  // \itkcaption[ResampleImageFilter with non-unit spacing]{Effect of non-unit
  // spacing on the input and output images.}
  // \label{fig:ResampleImageFilterTransformComposition5}
  // \end{figure}
  //
  //  Note also that the discretization of the image is more visible on the
  //  output presented on the right side of Figure
  //  \ref{fig:ResampleImageFilterTransformComposition5} due to the choice of a
  //  low resolution---just $40 \times 45$ pixels.
  //
  //  Software Guide : EndLatex

  return EXIT_SUCCESS;
}