1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// Previous examples have described the basic principles behind the
// \doxygen{ResampleImageFilter}. Now it's time to have some fun with it.
//
// Figure \ref{fig:ResampleImageFilterTransformComposition6} illustrates the
// general case of the resampling process. The origin and spacing of the
// output image has been selected to be different from those of the input
// image. The circles represent the \emph{center} of pixels. They are
// inscribed in a rectangle representing the \emph{coverage} of this pixel.
// The spacing specifies the distance between pixel centers along every
// dimension.
//
// The transform applied is a rotation of $30$ degrees. It is important to
// note here that the transform supplied to the
// \doxygen{ResampleImageFilter} is a \emph{clockwise} rotation. This
// transform rotates the \emph{coordinate system} of the output image 30
// degrees clockwise. When the two images are relocated in a common
// coordinate system---as in Figure
// \ref{fig:ResampleImageFilterTransformComposition6}---the result is that
// the frame of the output image appears rotated 30 degrees
// \emph{clockwise}. If the output image is seen with its coordinate system
// vertically aligned---as in Figure
// \ref{fig:ResampleImageFilterOutput9}---the image content appears rotated
// 30 degrees \emph{counter-clockwise}. Before continuing to read this
// section, you may want to meditate a bit on this fact while enjoying a cup
// of (Colombian) coffee.
//
// \begin{figure}
// \center
// \includegraphics[height=6cm]{ResampleImageFilterInput2x3}
// \includegraphics[height=4cm]{ResampleImageFilterOutput9}
// \itkcaption[Effect of a rotation on the resampling filter.]{Effect of a
// rotation on the resampling filter. Input image at left, output image at
// right.}
// \label{fig:ResampleImageFilterOutput9}
// \end{figure}
//
// \begin{figure}
// \center
// \includegraphics[width=\textwidth]{ResampleImageFilterTransformComposition6}
// \itkcaption[Input and output image placed in a common reference
// system]{Input and output image placed in a common reference system.}
// \label{fig:ResampleImageFilterTransformComposition6}
// \end{figure}
//
// The following code implements the conditions illustrated in Figure
// \ref{fig:ResampleImageFilterTransformComposition6} with two differences:
// the output spacing is $40$ times smaller and there are $40$ times more
// pixels in both dimensions. Without these changes, few
// details will be recognizable in the images. Note that the spacing and
// origin of the input image should be prepared in advance by using other
// means since this filter cannot alter the actual content of the
// input image in any way.
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkAffineTransform.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
int main( int argc, char * argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile";
std::cerr << " [exampleAction={0,1}]" << std::endl;
return EXIT_FAILURE;
}
int exampleAction = 0;
if( argc >= 4 )
{
exampleAction = atoi( argv[3] );
}
const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
typedef itk::ResampleImageFilter<
InputImageType, OutputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
typedef itk::AffineTransform< double, Dimension > TransformType;
TransformType::Pointer transform = TransformType::New();
typedef itk::NearestNeighborInterpolateImageFunction<
InputImageType, double > InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
filter->SetInterpolator( interpolator );
// Software Guide : BeginLatex
//
// In order to facilitate the interpretation of the transform we set the
// default pixel value to value be distinct from the image background.
//
// \index{itk::ResampleImageFilter!SetDefaultPixelValue()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetDefaultPixelValue( 100 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The spacing is selected here to be 40 times smaller than the one
// illustrated in Figure \ref{fig:ResampleImageFilterTransformComposition6}.
//
// \index{itk::ResampleImageFilter!SetOutputSpacing()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
double spacing[ Dimension ];
spacing[0] = 40.0 / 40.0; // pixel spacing in millimeters along X
spacing[1] = 30.0 / 40.0; // pixel spacing in millimeters along Y
filter->SetOutputSpacing( spacing );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We will preserve the orientation of the input image by using the following call.
//
// \index{itk::ResampleImageFilter!SetOutputOrigin()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetOutputDirection( reader->GetOutput()->GetDirection() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Let us now set up the origin of the output image. Note that the values
// provided here will be those of the space coordinates for the output
// image pixel of index $(0,0)$.
//
// \index{itk::ResampleImageFilter!SetOutputOrigin()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
double origin[ Dimension ];
origin[0] = 50.0; // X space coordinate of origin
origin[1] = 130.0; // Y space coordinate of origin
filter->SetOutputOrigin( origin );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output image size is defined to be $40$ times the one illustrated
// on the Figure \ref{fig:ResampleImageFilterTransformComposition6}.
//
// \index{itk::ResampleImageFilter!SetSize()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
InputImageType::SizeType size;
size[0] = 5 * 40; // number of pixels along X
size[1] = 4 * 40; // number of pixels along Y
filter->SetSize( size );
// Software Guide : EndCodeSnippet
filter->SetInput( reader->GetOutput() );
writer->SetInput( filter->GetOutput() );
// Software Guide : BeginLatex
//
// Rotations are performed around the origin of physical coordinates---not
// the image origin nor the image center. Hence, the process of
// positioning the output image frame as it is shown in Figure
// \ref{fig:ResampleImageFilterTransformComposition6} requires three
// steps. First, the image origin must be moved to the origin of the
// coordinate system. This is done by applying a translation equal to the
// negative values of the image origin.
//
// \index{itk::AffineTransform!Translate()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::OutputVectorType translation1;
translation1[0] = -origin[0];
translation1[1] = -origin[1];
transform->Translate( translation1 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In a second step, a rotation of $30$ degrees is performed. In the
// \doxygen{AffineTransform}, angles are specified in
// \emph{radians}. Also, a second boolean argument is used to specify if
// the current modification of the transform should be pre-composed or
// post-composed with the current transform content. In this case the
// argument is set to \code{false} to indicate that the rotation should be
// applied \emph{after} the current transform content.
//
// \index{itk::AffineTransform!Rotate2D()}
// \index{itk::AffineTransform!Composition}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const double degreesToRadians = std::atan(1.0) / 45.0;
transform->Rotate2D( -30.0 * degreesToRadians, false );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The third and final step implies translating the image origin back to
// its previous location. This is be done by applying a translation equal
// to the origin values.
//
// \index{itk::AffineTransform!Translate()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::OutputVectorType translation2;
translation2[0] = origin[0];
translation2[1] = origin[1];
transform->Translate( translation2, false );
filter->SetTransform( transform );
// Software Guide : EndCodeSnippet
if( exampleAction == 0 )
{
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception catched !" << std::endl;
std::cerr << excep << std::endl;
}
}
// Software Guide : BeginLatex
//
// Figure \ref{fig:ResampleImageFilterOutput9} presents the actual input
// and output images of this example as shown by a correct viewer which
// takes spacing into account. Note the \emph{clockwise} versus
// \emph{counter-clockwise} effect discussed previously between the
// representation in Figure
// \ref{fig:ResampleImageFilterTransformComposition6} and Figure
// \ref{fig:ResampleImageFilterOutput9}.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// As a final exercise, let's track the mapping of an individual pixel.
// Keep in mind that the transformation is initiated by walking through
// the pixels of the \emph{output} image. This is the only way to ensure
// that the image will be generated without holes or redundant
// values. When you think about transformation it is always useful to
// analyze things from the output image towards the input image.
//
// Let's take the pixel with index $I=(1,2)$ from the output image. The
// physical coordinates of this point in the output image reference system
// are $P=( 1 \times 40.0 + 50.0, 2 \times 30.0 + 130.0 ) = (90.0,190.0)$
// millimeters.
//
// This point $P$ is now mapped through the \doxygen{AffineTransform} into
// the input image space. The operation subtracts the origin,
// applies a $30$ degrees rotation and adds the origin back. Let's follow
// those steps. Subtracting the origin from $P$ leads to
// $P1=(40.0,60.0)$, the rotation maps $P1$ to $P2=( 40.0 \times cos
// (30.0) + 60.0 \times sin (30.0), 40.0 \times sin(30.0) - 60.0 \times
// cos(30.0)) = (64.64,31.96)$. Finally this point is translated back by
// the amount of the image origin. This moves $P2$ to
// $P3=(114.64,161.96)$.
//
// The point $P3$ is now in the coordinate system of the input image. The
// pixel of the input image associated with this physical position is
// computed using the origin and spacing of the input image. $I=( ( 114.64 -
// 60.0 )/ 20.0 , ( 161 - 70.0 ) / 30.0 )$ which results in $I=(2.7,3.0)$.
// Note that this is a non-grid position since the values are non-integers.
// This means that the gray value to be assigned to the output image pixel
// $I=(1,2)$ must be computed by interpolation of the input image values.
//
// In this particular code the interpolator used is simply a\newline
// \doxygen{NearestNeighborInterpolateImageFunction} which will assign the
// value of the closest pixel. This ends up being the pixel of index
// $I=(3,3)$ and can be seen from Figure
// \ref{fig:ResampleImageFilterTransformComposition6}.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|