1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ResampleImageFilterOutput10.png}
// ARGUMENTS: -15
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The following example illustrates how to rotate an image around its
// center. In this particular case an \doxygen{AffineTransform} is used to
// map the input space into the output space.
//
// \index{itk::AffineTransform!resampling}
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
// Software Guide : BeginLatex
//
// The header of the affine transform is included below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkAffineTransform.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile degrees" << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
const double angleInDegrees = atof( argv[3] );
typedef itk::ResampleImageFilter<
InputImageType, OutputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
// Software Guide : BeginLatex
//
// The transform type is instantiated using the coordinate representation
// type and the space dimension. Then a transform object is constructed
// with the \code{New()} method and passed to a \doxygen{SmartPointer}.
//
// \index{itk::AffineTransform!instantiation}
// \index{itk::AffineTransform!New()}
// \index{itk::AffineTransform!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::AffineTransform< double, Dimension > TransformType;
TransformType::Pointer transform = TransformType::New();
// Software Guide : EndCodeSnippet
typedef itk::LinearInterpolateImageFunction<
InputImageType, double > InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
filter->SetInterpolator( interpolator );
filter->SetDefaultPixelValue( 100 );
// Software Guide : BeginLatex
//
// The parameters of the output image are taken from the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
reader->Update();
const InputImageType * inputImage = reader->GetOutput();
const InputImageType::SpacingType & spacing = inputImage->GetSpacing();
const InputImageType::PointType & origin = inputImage->GetOrigin();
InputImageType::SizeType size =
inputImage->GetLargestPossibleRegion().GetSize();
filter->SetOutputOrigin( origin );
filter->SetOutputSpacing( spacing );
filter->SetOutputDirection( inputImage->GetDirection() );
filter->SetSize( size );
// Software Guide : EndCodeSnippet
filter->SetInput( reader->GetOutput() );
writer->SetInput( filter->GetOutput() );
// Software Guide : BeginLatex
//
// Rotations are performed around the origin of physical coordinates---not
// the image origin nor the image center. Hence, the process of
// positioning the output image frame as it is shown in Figure
// \ref{fig:ResampleImageFilterOutput10} requires three steps. First, the
// image origin must be moved to the origin of the coordinate system. This
// is done by applying a translation equal to the negative values of the
// image origin.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{ResampleImageFilterOutput10}
// \itkcaption[Effect of the Resample filter rotating an image]{Effect of the
// resample filter rotating an image.}
// \label{fig:ResampleImageFilterOutput10}
// \end{figure}
//
//
// \index{itk::AffineTransform!Translate()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::OutputVectorType translation1;
const double imageCenterX = origin[0] + spacing[0] * size[0] / 2.0;
const double imageCenterY = origin[1] + spacing[1] * size[1] / 2.0;
translation1[0] = -imageCenterX;
translation1[1] = -imageCenterY;
transform->Translate( translation1 );
// Software Guide : EndCodeSnippet
std::cout << "imageCenterX = " << imageCenterX << std::endl;
std::cout << "imageCenterY = " << imageCenterY << std::endl;
// Software Guide : BeginLatex
//
// In a second step, the rotation is specified using the method
// \code{Rotate2D()}.
//
// \index{itk::AffineTransform!Rotate2D()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const double degreesToRadians = std::atan(1.0) / 45.0;
const double angle = angleInDegrees * degreesToRadians;
transform->Rotate2D( -angle, false );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The third and final step requires translating the image origin back to
// its previous location. This is be done by applying a translation equal
// to the origin values.
//
// \index{itk::AffineTransform!Translate()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::OutputVectorType translation2;
translation2[0] = imageCenterX;
translation2[1] = imageCenterY;
transform->Translate( translation2, false );
filter->SetTransform( transform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of the resampling filter is connected to a writer and the
// execution of the pipeline is triggered by a writer update.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|