File: SecondDerivativeRecursiveGaussianImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (317 lines) | stat: -rw-r--r-- 9,979 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  This example illustrates how to compute second derivatives of
//  a 3D image using the \doxygen{RecursiveGaussianImageFilter}.
//
//  It's good to be able to compute the raw derivative without any smoothing,
//  but this can be problematic in a medical imaging scenario, when images will
//  often have a certain amount of noise. It's almost always more desirable to
//  include a smoothing step first, where an image is convolved with a Gaussian
//  kernel in whichever directions the user desires a derivative. The nature of
//  the Gaussian kernel makes it easy to combine these two steps into one,
//  using an infinite impulse response (IIR) filter. In this example, all the
//  second derivatives are computed independently in the same way, as if they
//  were intended to be used for building the Hessian matrix of the image (a
//  square matrix of second-order derivatives of an image, which is useful in
//  many image processing techniques).
//
//  Software Guide : EndLatex


//  Software Guide : BeginLatex
//
//  First, we will include the relevant header files: the
//  itkRecursiveGaussianImageFilter, the image reader, writer, and duplicator.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkRecursiveGaussianImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageDuplicator.h"
#include <string>
//  Software Guide : EndCodeSnippet

int main(int argc, char * argv [] )
{

  if( argc < 3 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " inputImage outputPrefix  [sigma] " << std::endl;
    return EXIT_FAILURE;
    }

  //  Software Guide : BeginLatex
  //
  //  Next, we declare our pixel type and output pixel type to be floats, and
  //  our image dimension to be $3$.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef float            PixelType;
  typedef float            OutputPixelType;

  const unsigned int  Dimension = 3;
  //  Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Using these definitions, define the image types, reader and writer types,
  //  and duplicator types, which are templated over the pixel types and
  //  dimension.  Then, instantiate the reader, writer, and duplicator with
  //  the \code{New()} method.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Image< PixelType,       Dimension >  ImageType;
  typedef itk::Image< OutputPixelType, Dimension >  OutputImageType;

  typedef itk::ImageFileReader< ImageType       >   ReaderType;
  typedef itk::ImageFileWriter< OutputImageType >   WriterType;

  typedef itk::ImageDuplicator< OutputImageType >   DuplicatorType;

  typedef itk::RecursiveGaussianImageFilter<
                                      ImageType,
                                      ImageType >  FilterType;

  ReaderType::Pointer  reader  = ReaderType::New();
  WriterType::Pointer  writer  = WriterType::New();

  DuplicatorType::Pointer duplicator  = DuplicatorType::New();
  // Software Guide : EndCodeSnippet

  reader->SetFileName( argv[1] );

  std::string outputPrefix = argv[2];
  std::string outputFileName;

  try
    {
    reader->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Problem reading the input file" << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  //  Software Guide : BeginLatex
  //
  //  Here we create three new filters. For each derivative we take, we will
  //  want to smooth in that direction first. So after the filters are created,
  //  each is given a dimension, and set to (in this example) the same sigma.
  //  Note that here, $\sigma$ represents the standard deviation, whereas the
  //  \doxygen{DiscreteGaussianImageFilter} exposes the \code{SetVariance}
  //  method.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  FilterType::Pointer ga = FilterType::New();
  FilterType::Pointer gb = FilterType::New();
  FilterType::Pointer gc = FilterType::New();

  ga->SetDirection( 0 );
  gb->SetDirection( 1 );
  gc->SetDirection( 2 );

  if( argc > 3 )
    {
    const float sigma = atof( argv[3] );
    ga->SetSigma( sigma );
    gb->SetSigma( sigma );
    gc->SetSigma( sigma );
    }
  //  Software Guide: EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  First we will compute the second derivative of the $z$-direction.
  //  In order to do this, we smooth in the $x$- and $y$- directions, and
  //  finally smooth and compute the derivative in the $z$-direction. Taking
  //  the zero-order derivative is equivalent to simply smoothing in that
  //  direction. This result is commonly notated $I_{zz}$.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  ga->SetZeroOrder();
  gb->SetZeroOrder();
  gc->SetSecondOrder();

  ImageType::Pointer inputImage = reader->GetOutput();

  ga->SetInput( inputImage );
  gb->SetInput( ga->GetOutput() );
  gc->SetInput( gb->GetOutput() );

  duplicator->SetInputImage( gc->GetOutput() );

  gc->Update();
  duplicator->Update();

  ImageType::Pointer Izz = duplicator->GetModifiableOutput();
  //  Software Guide: EndCodeSnippet

  writer->SetInput( Izz );
  outputFileName = outputPrefix + "-Izz.mhd";
  writer->SetFileName( outputFileName.c_str() );
  writer->Update();

  //  Software Guide : BeginLatex
  //
  //  Recall that \code{gc} is the filter responsible for taking the second
  //  derivative. We can now take advantage of the pipeline architecture and,
  //  without much hassle, switch the direction of \code{gc} and \code{gb},
  //  so that \code{gc} now takes the derivatives in the $y$-direction. Now we
  //  only need to call \code{Update()} on \code{gc} to re-run the entire pipeline
  //  from \code{ga} to \code{gc}, obtaining the second-order derivative in the
  //  $y$-direction, which is commonly notated $I_{yy}$.
  //
  // Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  gc->SetDirection( 1 );  // gc now works along Y
  gb->SetDirection( 2 );  // gb now works along Z

  gc->Update();
  duplicator->Update();

  ImageType::Pointer Iyy = duplicator->GetModifiableOutput();
  //  Software Guide : EndCodeSnippet

  writer->SetInput( Iyy );
  outputFileName = outputPrefix + "-Iyy.mhd";
  writer->SetFileName( outputFileName.c_str() );
  writer->Update();

  //  Software Guide : BeginLatex
  //
  //  Now we switch the directions of \code{gc} with that of \code{ga} in order
  //  to take the derivatives in the $x$-direction. This will give us $I_{xx}$.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  gc->SetDirection( 0 );  // gc now works along X
  ga->SetDirection( 1 );  // ga now works along Y

  gc->Update();
  duplicator->Update();

  ImageType::Pointer Ixx = duplicator->GetModifiableOutput();
  //  Software Guide : EndCodeSnippet

  writer->SetInput( Ixx );
  outputFileName = outputPrefix + "-Ixx.mhd";
  writer->SetFileName( outputFileName.c_str() );
  writer->Update();

  //  Software Guide : BeginLatex
  //
  //  Now we can reset the directions to their original values, and compute
  //  first derivatives in different directions. Since we set both \code{gb}
  //  and \code{gc} to compute first derivatives, and \code{ga} to zero-order
  //  (which is only smoothing) we will obtain $I_{yz}$.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  ga->SetDirection( 0 );
  gb->SetDirection( 1 );
  gc->SetDirection( 2 );

  ga->SetZeroOrder();
  gb->SetFirstOrder();
  gc->SetFirstOrder();

  gc->Update();
  duplicator->Update();

  ImageType::Pointer Iyz = duplicator->GetModifiableOutput();
  //  Software Guide : EndCodeSnippet

  writer->SetInput( Iyz );
  outputFileName = outputPrefix + "-Iyz.mhd";
  writer->SetFileName( outputFileName.c_str() );
  writer->Update();

  //  Software Guide : BeginLatex
  //
  //  Here is how you may easily obtain $I_{xz}$.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  ga->SetDirection( 1 );
  gb->SetDirection( 0 );
  gc->SetDirection( 2 );

  ga->SetZeroOrder();
  gb->SetFirstOrder();
  gc->SetFirstOrder();

  gc->Update();
  duplicator->Update();

  ImageType::Pointer Ixz = duplicator->GetModifiableOutput();
  //  Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  For the sake of completeness, here is how you may compute
  //  $I_{xz}$ and $I_{xy}$.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  writer->SetInput( Ixz );
  outputFileName = outputPrefix + "-Ixz.mhd";
  writer->SetFileName( outputFileName.c_str() );
  writer->Update();

  ga->SetDirection( 2 );
  gb->SetDirection( 0 );
  gc->SetDirection( 1 );

  ga->SetZeroOrder();
  gb->SetFirstOrder();
  gc->SetFirstOrder();

  gc->Update();
  duplicator->Update();

  ImageType::Pointer Ixy = duplicator->GetModifiableOutput();

  writer->SetInput( Ixy );
  outputFileName = outputPrefix + "-Ixy.mhd";
  writer->SetFileName( outputFileName.c_str() );
  writer->Update();
  // Software Guide : EndCodeSnippet

return EXIT_SUCCESS;
}