1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to compute second derivatives of
// a 3D image using the \doxygen{RecursiveGaussianImageFilter}.
//
// It's good to be able to compute the raw derivative without any smoothing,
// but this can be problematic in a medical imaging scenario, when images will
// often have a certain amount of noise. It's almost always more desirable to
// include a smoothing step first, where an image is convolved with a Gaussian
// kernel in whichever directions the user desires a derivative. The nature of
// the Gaussian kernel makes it easy to combine these two steps into one,
// using an infinite impulse response (IIR) filter. In this example, all the
// second derivatives are computed independently in the same way, as if they
// were intended to be used for building the Hessian matrix of the image (a
// square matrix of second-order derivatives of an image, which is useful in
// many image processing techniques).
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// First, we will include the relevant header files: the
// itkRecursiveGaussianImageFilter, the image reader, writer, and duplicator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkRecursiveGaussianImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageDuplicator.h"
#include <string>
// Software Guide : EndCodeSnippet
int main(int argc, char * argv [] )
{
if( argc < 3 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImage outputPrefix [sigma] " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Next, we declare our pixel type and output pixel type to be floats, and
// our image dimension to be $3$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float PixelType;
typedef float OutputPixelType;
const unsigned int Dimension = 3;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Using these definitions, define the image types, reader and writer types,
// and duplicator types, which are templated over the pixel types and
// dimension. Then, instantiate the reader, writer, and duplicator with
// the \code{New()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Image< PixelType, Dimension > ImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::ImageFileReader< ImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
typedef itk::ImageDuplicator< OutputImageType > DuplicatorType;
typedef itk::RecursiveGaussianImageFilter<
ImageType,
ImageType > FilterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
DuplicatorType::Pointer duplicator = DuplicatorType::New();
// Software Guide : EndCodeSnippet
reader->SetFileName( argv[1] );
std::string outputPrefix = argv[2];
std::string outputFileName;
try
{
reader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem reading the input file" << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Here we create three new filters. For each derivative we take, we will
// want to smooth in that direction first. So after the filters are created,
// each is given a dimension, and set to (in this example) the same sigma.
// Note that here, $\sigma$ represents the standard deviation, whereas the
// \doxygen{DiscreteGaussianImageFilter} exposes the \code{SetVariance}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FilterType::Pointer ga = FilterType::New();
FilterType::Pointer gb = FilterType::New();
FilterType::Pointer gc = FilterType::New();
ga->SetDirection( 0 );
gb->SetDirection( 1 );
gc->SetDirection( 2 );
if( argc > 3 )
{
const float sigma = atof( argv[3] );
ga->SetSigma( sigma );
gb->SetSigma( sigma );
gc->SetSigma( sigma );
}
// Software Guide: EndCodeSnippet
// Software Guide : BeginLatex
//
// First we will compute the second derivative of the $z$-direction.
// In order to do this, we smooth in the $x$- and $y$- directions, and
// finally smooth and compute the derivative in the $z$-direction. Taking
// the zero-order derivative is equivalent to simply smoothing in that
// direction. This result is commonly notated $I_{zz}$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ga->SetZeroOrder();
gb->SetZeroOrder();
gc->SetSecondOrder();
ImageType::Pointer inputImage = reader->GetOutput();
ga->SetInput( inputImage );
gb->SetInput( ga->GetOutput() );
gc->SetInput( gb->GetOutput() );
duplicator->SetInputImage( gc->GetOutput() );
gc->Update();
duplicator->Update();
ImageType::Pointer Izz = duplicator->GetModifiableOutput();
// Software Guide: EndCodeSnippet
writer->SetInput( Izz );
outputFileName = outputPrefix + "-Izz.mhd";
writer->SetFileName( outputFileName.c_str() );
writer->Update();
// Software Guide : BeginLatex
//
// Recall that \code{gc} is the filter responsible for taking the second
// derivative. We can now take advantage of the pipeline architecture and,
// without much hassle, switch the direction of \code{gc} and \code{gb},
// so that \code{gc} now takes the derivatives in the $y$-direction. Now we
// only need to call \code{Update()} on \code{gc} to re-run the entire pipeline
// from \code{ga} to \code{gc}, obtaining the second-order derivative in the
// $y$-direction, which is commonly notated $I_{yy}$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
gc->SetDirection( 1 ); // gc now works along Y
gb->SetDirection( 2 ); // gb now works along Z
gc->Update();
duplicator->Update();
ImageType::Pointer Iyy = duplicator->GetModifiableOutput();
// Software Guide : EndCodeSnippet
writer->SetInput( Iyy );
outputFileName = outputPrefix + "-Iyy.mhd";
writer->SetFileName( outputFileName.c_str() );
writer->Update();
// Software Guide : BeginLatex
//
// Now we switch the directions of \code{gc} with that of \code{ga} in order
// to take the derivatives in the $x$-direction. This will give us $I_{xx}$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
gc->SetDirection( 0 ); // gc now works along X
ga->SetDirection( 1 ); // ga now works along Y
gc->Update();
duplicator->Update();
ImageType::Pointer Ixx = duplicator->GetModifiableOutput();
// Software Guide : EndCodeSnippet
writer->SetInput( Ixx );
outputFileName = outputPrefix + "-Ixx.mhd";
writer->SetFileName( outputFileName.c_str() );
writer->Update();
// Software Guide : BeginLatex
//
// Now we can reset the directions to their original values, and compute
// first derivatives in different directions. Since we set both \code{gb}
// and \code{gc} to compute first derivatives, and \code{ga} to zero-order
// (which is only smoothing) we will obtain $I_{yz}$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ga->SetDirection( 0 );
gb->SetDirection( 1 );
gc->SetDirection( 2 );
ga->SetZeroOrder();
gb->SetFirstOrder();
gc->SetFirstOrder();
gc->Update();
duplicator->Update();
ImageType::Pointer Iyz = duplicator->GetModifiableOutput();
// Software Guide : EndCodeSnippet
writer->SetInput( Iyz );
outputFileName = outputPrefix + "-Iyz.mhd";
writer->SetFileName( outputFileName.c_str() );
writer->Update();
// Software Guide : BeginLatex
//
// Here is how you may easily obtain $I_{xz}$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ga->SetDirection( 1 );
gb->SetDirection( 0 );
gc->SetDirection( 2 );
ga->SetZeroOrder();
gb->SetFirstOrder();
gc->SetFirstOrder();
gc->Update();
duplicator->Update();
ImageType::Pointer Ixz = duplicator->GetModifiableOutput();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// For the sake of completeness, here is how you may compute
// $I_{xz}$ and $I_{xy}$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
writer->SetInput( Ixz );
outputFileName = outputPrefix + "-Ixz.mhd";
writer->SetFileName( outputFileName.c_str() );
writer->Update();
ga->SetDirection( 2 );
gb->SetDirection( 0 );
gc->SetDirection( 1 );
ga->SetZeroOrder();
gb->SetFirstOrder();
gc->SetFirstOrder();
gc->Update();
duplicator->Update();
ImageType::Pointer Ixy = duplicator->GetModifiableOutput();
writer->SetInput( Ixy );
outputFileName = outputPrefix + "-Ixy.mhd";
writer->SetFileName( outputFileName.c_str() );
writer->Update();
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|