File: SigmoidImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (245 lines) | stat: -rw-r--r-- 9,146 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {SigmoidImageFilterOutput.png}
//    ARGUMENTS:    10 240 10 170
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
//
//  The \doxygen{SigmoidImageFilter} is commonly used as an intensity
//  transform.  It maps a specific range of intensity values into a new
//  intensity range by making a very smooth and continuous transition in the
//  borders of the range.  Sigmoids are widely used as a mechanism for focusing
//  attention on a particular set of values and progressively attenuating the
//  values outside that range. In order to extend the flexibility of the
//  Sigmoid filter, its implementation in ITK includes four parameters that can
//  be tuned to select its input and output intensity ranges. The following
//  equation represents the Sigmoid intensity transformation, applied
//  pixel-wise.
//
//  \begin{equation}
//  I' = (Max-Min)\cdot \frac{1}{\left(1+e^{-\left(\frac{ I - \beta }{\alpha } \right)} \right)} + Min
//  \end{equation}
//
//  In the equation above, $I$ is the intensity of the input pixel, $I'$ the
//  intensity of the output pixel, $Min,Max$ are the minimum and maximum values
//  of the output image, $\alpha$ defines the width of the input intensity
//  range, and $\beta$ defines the intensity around which the range is
//  centered. Figure~\ref{fig:SigmoidParameters} illustrates the significance
//  of each parameter.
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{SigmoidParameterAlpha}
// \includegraphics[width=0.44\textwidth]{SigmoidParameterBeta}
// \itkcaption[Sigmoid Parameters]{Effects of the various parameters in the
// SigmoidImageFilter.  The alpha parameter defines the width of the intensity
// window.  The beta parameter defines the center of the intensity window.}
// \label{fig:SigmoidParameters} \end{figure}
//
//  This filter will work on images of any dimension and will take advantage of
//  multiple processors when available.
//
//  \index{itk::SigmoidImageFilter }
//
//  Software Guide : EndLatex


#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"


//  Software Guide : BeginLatex
//
//  The header file corresponding to this filter should be included first.
//
//  \index{itk::SigmoidImageFilter!header}
//
//  Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
#include "itkSigmoidImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 7 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile   outputImageFile";
    std::cerr << " OutputMin OutputMax SigmoidAlpha SigmoidBeta" << std::endl;
    return EXIT_FAILURE;
    }

  //  Software Guide : BeginLatex
  //
  //  Then pixel and image types for the filter input and output must be
  //  defined.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef   unsigned char  InputPixelType;
  typedef   unsigned char  OutputPixelType;

  typedef itk::Image< InputPixelType,  2 >   InputImageType;
  typedef itk::Image< OutputPixelType, 2 >   OutputImageType;
  // Software Guide : EndCodeSnippet

  typedef itk::ImageFileReader< InputImageType  >  ReaderType;
  typedef itk::ImageFileWriter< OutputImageType >  WriterType;

  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  reader->SetFileName( argv[1] );
  writer->SetFileName( argv[2] );


  //  Software Guide : BeginLatex
  //
  //  Using the image types, we instantiate the filter type
  //  and create the filter object.
  //
  //  \index{itk::SigmoidImageFilter!instantiation}
  //  \index{itk::SigmoidImageFilter!New()}
  //  \index{itk::SigmoidImageFilter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::SigmoidImageFilter<
               InputImageType, OutputImageType >  SigmoidFilterType;
  SigmoidFilterType::Pointer sigmoidFilter = SigmoidFilterType::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The minimum and maximum values desired in the output are defined using the
  //  methods \code{SetOutputMinimum()} and \code{SetOutputMaximum()}.
  //
  //  \index{itk::SigmoidImageFilter!SetOutputMaximum()}
  //  \index{itk::SigmoidImageFilter!SetOutputMinimum()}
  //
  //  Software Guide : EndLatex

  const OutputPixelType outputMinimum = atoi( argv[3] );
  const OutputPixelType outputMaximum = atoi( argv[4] );

  // Software Guide : BeginCodeSnippet
  sigmoidFilter->SetOutputMinimum(   outputMinimum  );
  sigmoidFilter->SetOutputMaximum(   outputMaximum  );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The coefficients $\alpha$ and $\beta$ are set with the methods
  //  \code{SetAlpha()} and \code{SetBeta()}.  Note that $\alpha$ is
  //  proportional to the width of the input intensity window.  As rule of
  //  thumb, we may say that the window is the interval $[-3\alpha, 3\alpha]$.
  //  The boundaries of the intensity window are not sharp.  The $\alpha$ curve
  //  approaches its extrema smoothly, as shown in
  //  Figure~\ref{fig:SigmoidParameters}.  You may want to think about this in
  //  the same terms as when taking a range in a population of measures by
  //  defining an interval of $[-3 \sigma, +3 \sigma]$ around the population
  //  mean.
  //
  //  \index{itk::SigmoidImageFilter!SetAlpha()}
  //  \index{itk::SigmoidImageFilter!SetBeta()}
  //
  //  Software Guide : EndLatex

  const double  alpha = atof( argv[5] );
  const double  beta  = atof( argv[6] );

  // Software Guide : BeginCodeSnippet
  sigmoidFilter->SetAlpha(  alpha  );
  sigmoidFilter->SetBeta(   beta   );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The input to the SigmoidImageFilter can be taken from any other filter,
  //  such as an image file reader, for example. The output can be passed down the
  //  pipeline to other filters, like an image file writer. An \code{Update()} call on
  //  any downstream filter will trigger the execution of the Sigmoid filter.
  //
  //  \index{itk::SigmoidImageFilter!SetInput()}
  //  \index{itk::SigmoidImageFilter!GetOutput()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  sigmoidFilter->SetInput( reader->GetOutput() );
  writer->SetInput( sigmoidFilter->GetOutput() );
  writer->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
  // \includegraphics[width=0.44\textwidth]{SigmoidImageFilterOutput}
  // \itkcaption[Effect of the Sigmoid filter.]{Effect of the Sigmoid filter on a
  // slice from a MRI proton density brain image.}
  // \label{fig:SigmoidImageFilterOutput}
  // \end{figure}
  //
  //  Figure~\ref{fig:SigmoidImageFilterOutput} illustrates the effect of this
  //  filter on a slice of MRI brain image using the following parameters.
  //
  //  \begin{itemize}
  //  \item Minimum =  10
  //  \item Maximum = 240
  //  \item $\alpha$ =  10
  //  \item $\beta$ = 170
  //  \end{itemize}
  //
  //  As can be seen from the figure, the intensities of the white matter
  //  were expanded in their dynamic range, while intensity values lower than
  //  $\beta - 3 \alpha$ and higher than $\beta + 3\alpha$ became progressively
  //  mapped to the minimum and maximum output values. This is the way in which
  //  a Sigmoid can be used for performing smooth intensity windowing.
  //
  //  Note that both $\alpha$ and $\beta$ can be positive and negative. A
  //  negative $\alpha$ will have the effect of \emph{negating} the image. This
  //  is illustrated on the left side of Figure~\ref{fig:SigmoidParameters}. An
  //  application of the Sigmoid filter as preprocessing for segmentation is
  //  presented in Section~\ref{sec:FastMarchingImageFilter}.
  //
  //  Sigmoid curves are common in the natural world.  They represent the
  //  plot of sensitivity to a stimulus. They are also the integral curve of
  //  the Gaussian and, therefore, appear naturally as the response to signals
  //  whose distribution is Gaussian.
  //
  //  Software Guide : EndLatex


  return EXIT_SUCCESS;
}