1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {SmoothingRecursiveGaussianImageFilterOutput3.png}
// ARGUMENTS: 3
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {SmoothingRecursiveGaussianImageFilterOutput5.png}
// ARGUMENTS: 5
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The classical method of smoothing an image by convolution with a Gaussian
// kernel has the drawback that it is slow when the standard deviation $\sigma$ of
// the Gaussian is large. This is due to the larger size of the kernel,
// which results in a higher number of computations per pixel.
//
// The \doxygen{RecursiveGaussianImageFilter} implements an approximation of
// convolution with the Gaussian and its derivatives by using
// IIR\footnote{Infinite Impulse Response} filters. In practice this filter
// requires a constant number of operations for approximating the convolution,
// regardless of the $\sigma$ value \cite{Deriche1990,Deriche1993}.
//
// \index{itk::RecursiveGaussianImageFilter}
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// The first step required to use this filter is to include its header file.
//
// \index{itk::RecursiveGaussianImageFilter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile sigma " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Types should be selected on the desired input and output pixel types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InputPixelType;
typedef float OutputPixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input and output image types are instantiated using the pixel types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
// Software Guide : BeginLatex
//
// The filter type is now instantiated using both the input image and the
// output image types.
//
// \index{itk::RecursiveGaussianImageFilter!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RecursiveGaussianImageFilter<
InputImageType, OutputImageType > FilterType;
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// This filter applies the approximation of the convolution along a single
// dimension. It is therefore necessary to concatenate several of these filters
// to produce smoothing in all directions. In this example, we create a pair
// of filters since we are processing a $2D$ image. The filters are
// created by invoking the \code{New()} method and assigning the result to
// a \doxygen{SmartPointer}.
//
// \index{itk::RecursiveGaussianImageFilter!New()}
// \index{itk::RecursiveGaussianImageFilter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FilterType::Pointer filterX = FilterType::New();
FilterType::Pointer filterY = FilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since each one of the newly created filters has the potential to perform
// filtering along any dimension, we have to restrict each one to a
// particular direction. This is done with the \code{SetDirection()} method.
//
// \index{RecursiveGaussianImageFilter!SetDirection()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filterX->SetDirection( 0 ); // 0 --> X direction
filterY->SetDirection( 1 ); // 1 --> Y direction
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \doxygen{RecursiveGaussianImageFilter} can approximate the
// convolution with the Gaussian or with its first and second
// derivatives. We select one of these options by using the
// \code{SetOrder()} method. Note that the argument is an \code{enum} whose
// values can be \code{ZeroOrder}, \code{FirstOrder} and
// \code{SecondOrder}. For example, to compute the $x$ partial derivative we
// should select \code{FirstOrder} for $x$ and \code{ZeroOrder} for
// $y$. Here we want only to smooth in $x$ and $y$, so we select
// \code{ZeroOrder} in both directions.
//
// \index{RecursiveGaussianImageFilter!SetOrder()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filterX->SetOrder( FilterType::ZeroOrder );
filterY->SetOrder( FilterType::ZeroOrder );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// There are two typical ways of normalizing Gaussians depending on their
// application. For scale-space analysis it is desirable to use a
// normalization that will preserve the maximum value of the input. This
// normalization is represented by the following equation.
//
// \begin{equation}
// \frac{ 1 }{ \sigma \sqrt{ 2 \pi } }
// \end{equation}
//
// In applications that use the Gaussian as a solution of the diffusion
// equation it is desirable to use a normalization that preserve the
// integral of the signal. This last approach can be seen as a conservation
// of mass principle. This is represented by the following equation.
//
// \begin{equation}
// \frac{ 1 }{ \sigma^2 \sqrt{ 2 \pi } }
// \end{equation}
//
// The \doxygen{RecursiveGaussianImageFilter} has a boolean flag that allows
// users to select between these two normalization options. Selection is
// done with the method \code{SetNormalizeAcrossScale()}. Enable this flag
// to analyzing an image across scale-space. In the current example, this
// setting has no impact because we are actually renormalizing the output to
// the dynamic range of the reader, so we simply disable the flag.
//
// \index{RecursiveGaussianImageFilter!SetNormalizeAcrossScale()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filterX->SetNormalizeAcrossScale( false );
filterY->SetNormalizeAcrossScale( false );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another
// filter. Here, an image reader is used as the source. The image is passed to
// the $x$ filter and then to the $y$ filter. The reason for keeping these
// two filters separate is that it is usual in scale-space applications to
// compute not only the smoothing but also combinations of derivatives at
// different orders and smoothing. Some factorization is possible when
// separate filters are used to generate the intermediate results. Here
// this capability is less interesting, though, since we only want to smooth
// the image in all directions.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filterX->SetInput( reader->GetOutput() );
filterY->SetInput( filterX->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// It is now time to select the $\sigma$ of the Gaussian used to smooth the
// data. Note that $\sigma$ must be passed to both filters and that sigma
// is considered to be in millimeters. That is, at the moment of applying
// the smoothing process, the filter will take into account the spacing
// values defined in the image.
//
// \index{itk::RecursiveGaussianImageFilter!SetSigma()}
// \index{SetSigma()!itk::RecursiveGaussianImageFilter}
//
// Software Guide : EndLatex
const double sigma = atof( argv[3] );
// Software Guide : BeginCodeSnippet
filterX->SetSigma( sigma );
filterY->SetSigma( sigma );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally the pipeline is executed by invoking the \code{Update()} method.
//
// \index{itk::RecursiveGaussianImageFilter!Update()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filterY->Update();
// Software Guide : EndCodeSnippet
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::RescaleIntensityImageFilter<
OutputImageType, WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
rescaler->SetInput( filterY->GetOutput() );
writer->SetInput( rescaler->GetOutput() );
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{SmoothingRecursiveGaussianImageFilterOutput3}
// \includegraphics[width=0.44\textwidth]{SmoothingRecursiveGaussianImageFilterOutput5}
// \itkcaption[Output of the SmoothingRecursiveGaussianImageFilter.]{Effect of the
// SmoothingRecursiveGaussianImageFilter on a slice from a MRI proton density image
// of the brain.}
// \label{fig:SmoothingRecursiveGaussianImageFilterInputOutput}
// \end{figure}
//
// Figure~\ref{fig:SmoothingRecursiveGaussianImageFilterInputOutput} illustrates the
// effect of this filter on a MRI proton density image of the brain using
// $\sigma$ values of $3$ (left) and $5$ (right). The figure shows how the
// attenuation of noise can be regulated by selecting the appropriate
// standard deviation. This type of scale-tunable filter is suitable for
// performing scale-space analysis.
//
// The RecursiveGaussianFilters can also be applied on multi-component images. For instance,
// the above filter could have applied with RGBPixel as the pixel type. Each component is
// then independently filtered. However the RescaleIntensityImageFilter will not work on
// RGBPixels since it does not mathematically make sense to rescale the output
// of multi-component images.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|