File: SmoothingRecursiveGaussianImageFilter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (318 lines) | stat: -rw-r--r-- 11,770 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {SmoothingRecursiveGaussianImageFilterOutput3.png}
//    ARGUMENTS:    3
//  Software Guide : EndCommandLineArgs
//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainProtonDensitySlice.png}
//    OUTPUTS: {SmoothingRecursiveGaussianImageFilterOutput5.png}
//    ARGUMENTS:    5
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
//
//  The classical method of smoothing an image by convolution with a Gaussian
//  kernel has the drawback that it is slow when the standard deviation $\sigma$ of
//  the Gaussian is large.  This is due to the larger size of the kernel,
//  which results in a higher number of computations per pixel.
//
//  The \doxygen{RecursiveGaussianImageFilter} implements an approximation of
//  convolution with the Gaussian and its derivatives by using
//  IIR\footnote{Infinite Impulse Response} filters. In practice this filter
//  requires a constant number of operations for approximating the convolution,
//  regardless of the $\sigma$ value \cite{Deriche1990,Deriche1993}.
//
//  \index{itk::RecursiveGaussianImageFilter}
//
//  Software Guide : EndLatex


#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

//  Software Guide : BeginLatex
//
//  The first step required to use this filter is to include its header file.
//
//  \index{itk::RecursiveGaussianImageFilter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile  outputImageFile  sigma " << std::endl;
    return EXIT_FAILURE;
    }


  //  Software Guide : BeginLatex
  //
  //  Types should be selected on the desired input and output pixel types.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef    float    InputPixelType;
  typedef    float    OutputPixelType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The input and output image types are instantiated using the pixel types.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Image< InputPixelType,  2 >   InputImageType;
  typedef itk::Image< OutputPixelType, 2 >   OutputImageType;
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType >  ReaderType;


  //  Software Guide : BeginLatex
  //
  //  The filter type is now instantiated using both the input image and the
  //  output image types.
  //
  //  \index{itk::RecursiveGaussianImageFilter!Instantiation}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::RecursiveGaussianImageFilter<
                        InputImageType, OutputImageType >  FilterType;
  // Software Guide : EndCodeSnippet


  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );


  //  Software Guide : BeginLatex
  //
  //  This filter applies the approximation of the convolution along a single
  //  dimension. It is therefore necessary to concatenate several of these filters
  //  to produce smoothing in all directions.  In this example, we create a pair
  //  of filters since we are processing a $2D$ image.  The filters are
  //  created by invoking the \code{New()} method and assigning the result to
  //  a \doxygen{SmartPointer}.
  //
  //  \index{itk::RecursiveGaussianImageFilter!New()}
  //  \index{itk::RecursiveGaussianImageFilter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  FilterType::Pointer filterX = FilterType::New();
  FilterType::Pointer filterY = FilterType::New();
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Since each one of the newly created filters has the potential to perform
  //  filtering along any dimension, we have to restrict each one to a
  //  particular direction. This is done with the \code{SetDirection()} method.
  //
  //  \index{RecursiveGaussianImageFilter!SetDirection()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filterX->SetDirection( 0 );   // 0 --> X direction
  filterY->SetDirection( 1 );   // 1 --> Y direction
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The \doxygen{RecursiveGaussianImageFilter} can approximate the
  //  convolution with the Gaussian or with its first and second
  //  derivatives. We select one of these options by using the
  //  \code{SetOrder()} method. Note that the argument is an \code{enum} whose
  //  values can be \code{ZeroOrder}, \code{FirstOrder} and
  //  \code{SecondOrder}. For example, to compute the $x$ partial derivative we
  //  should select \code{FirstOrder} for $x$ and \code{ZeroOrder} for
  //  $y$. Here we want only to smooth in $x$ and $y$, so we select
  //  \code{ZeroOrder} in both directions.
  //
  //  \index{RecursiveGaussianImageFilter!SetOrder()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filterX->SetOrder( FilterType::ZeroOrder );
  filterY->SetOrder( FilterType::ZeroOrder );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  There are two typical ways of normalizing Gaussians depending on their
  //  application. For scale-space analysis it is desirable to use a
  //  normalization that will preserve the maximum value of the input. This
  //  normalization is represented by the following equation.
  //
  //  \begin{equation}
  //          \frac{ 1 }{ \sigma  \sqrt{ 2 \pi } }
  //  \end{equation}
  //
  //  In applications that use the Gaussian as a solution of the diffusion
  //  equation it is desirable to use a normalization that preserve the
  //  integral of the signal. This last approach can be seen as a conservation
  //  of mass principle. This is represented by the following equation.
  //
  //  \begin{equation}
  //          \frac{ 1 }{ \sigma^2  \sqrt{ 2 \pi } }
  //  \end{equation}
  //
  //  The \doxygen{RecursiveGaussianImageFilter} has a boolean flag that allows
  //  users to select between these two normalization options. Selection is
  //  done with the method \code{SetNormalizeAcrossScale()}. Enable this flag
  //  to analyzing an image across scale-space.  In the current example, this
  //  setting has no impact because we are actually renormalizing the output to
  //  the dynamic range of the reader, so we simply disable the flag.
  //
  //  \index{RecursiveGaussianImageFilter!SetNormalizeAcrossScale()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filterX->SetNormalizeAcrossScale( false );
  filterY->SetNormalizeAcrossScale( false );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The input image can be obtained from the output of another
  //  filter. Here, an image reader is used as the source. The image is passed to
  //  the $x$ filter and then to the $y$ filter. The reason for keeping these
  //  two filters separate is that it is usual in scale-space applications to
  //  compute not only the smoothing but also combinations of derivatives at
  //  different orders and smoothing. Some factorization is possible when
  //  separate filters are used to generate the intermediate results. Here
  //  this capability is less interesting, though, since we only want to smooth
  //  the image in all directions.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filterX->SetInput( reader->GetOutput() );
  filterY->SetInput( filterX->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  It is now time to select the $\sigma$ of the Gaussian used to smooth the
  //  data.  Note that $\sigma$ must be passed to both filters and that sigma
  //  is considered to be in millimeters. That is, at the moment of applying
  //  the smoothing process, the filter will take into account the spacing
  //  values defined in the image.
  //
  //  \index{itk::RecursiveGaussianImageFilter!SetSigma()}
  //  \index{SetSigma()!itk::RecursiveGaussianImageFilter}
  //
  //  Software Guide : EndLatex

  const double sigma = atof( argv[3] );

  // Software Guide : BeginCodeSnippet
  filterX->SetSigma( sigma );
  filterY->SetSigma( sigma );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Finally the pipeline is executed by invoking the \code{Update()} method.
  //
  //  \index{itk::RecursiveGaussianImageFilter!Update()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  filterY->Update();
  // Software Guide : EndCodeSnippet


  typedef unsigned char                              WritePixelType;
  typedef itk::Image< WritePixelType, 2 >            WriteImageType;
  typedef itk::RescaleIntensityImageFilter<
                   OutputImageType, WriteImageType > RescaleFilterType;

  RescaleFilterType::Pointer rescaler = RescaleFilterType::New();

  rescaler->SetOutputMinimum(   0 );
  rescaler->SetOutputMaximum( 255 );
  typedef itk::ImageFileWriter< WriteImageType >  WriterType;
  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );

  rescaler->SetInput( filterY->GetOutput() );
  writer->SetInput( rescaler->GetOutput() );
  writer->Update();


  //  Software Guide : BeginLatex
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{SmoothingRecursiveGaussianImageFilterOutput3}
  // \includegraphics[width=0.44\textwidth]{SmoothingRecursiveGaussianImageFilterOutput5}
  // \itkcaption[Output of the SmoothingRecursiveGaussianImageFilter.]{Effect of the
  // SmoothingRecursiveGaussianImageFilter on a slice from a MRI proton density image
  // of the brain.}
  // \label{fig:SmoothingRecursiveGaussianImageFilterInputOutput}
  // \end{figure}
  //
  //  Figure~\ref{fig:SmoothingRecursiveGaussianImageFilterInputOutput} illustrates the
  //  effect of this filter on a MRI proton density image of the brain using
  //  $\sigma$ values of $3$ (left) and $5$ (right).  The figure shows how the
  //  attenuation of noise can be regulated by selecting the appropriate
  //  standard deviation.  This type of scale-tunable filter is suitable for
  //  performing scale-space analysis.
  //
  //  The RecursiveGaussianFilters can also be applied on multi-component images. For instance,
  //  the above filter could have applied with RGBPixel as the pixel type. Each component is
  //  then independently filtered. However the RescaleIntensityImageFilter will not work on
  //  RGBPixels since it does not mathematically make sense to rescale the output
  //  of multi-component images.
  //
  //  Software Guide : EndLatex


  return EXIT_SUCCESS;
}