1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// Setting up a pipeline of $m$ filters in order to smooth an N-dimensional
// image may be a lot of work to do for achieving a simple goal. In order to
// avoid this inconvenience, a filter packaging this $m$ filters internally
// is available. This filter is the
// \doxygen{SmoothingRecursiveGaussianImageFilter}.
//
// \index{itk::SmoothingRecursiveGaussianImageFilter}
//
// Software Guide : EndLatex
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// In order to use this filter the following header file must be included.
//
// \index{itk::SmoothingRecursiveGaussianImageFilter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkSmoothingRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile sigma " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Appropriate pixel types must be selected to support input and output
// images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InputPixelType;
typedef float OutputPixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// With them, the input and output image types can be instantiated.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
// Software Guide : BeginLatex
//
// The filter type is now instantiated using both the input image and the
// output image types. If the second template parameter is omitted, the
// filter will assume that the output image has the same type as the input
// image.
//
// \index{itk::SmoothingRecursiveGaussianImageFilter!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::SmoothingRecursiveGaussianImageFilter<
InputImageType, OutputImageType > FilterType;
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// Now a single filter is enough for smoothing the image along all the
// dimensions. The filter is created by invoking the \code{New()} method
// and assigning the result to a \doxygen{SmartPointer}.
//
// \index{itk::SmoothingRecursiveGaussianImageFilter!New()}
// \index{itk::SmoothingRecursiveGaussianImageFilter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As in the previous examples we should decide what type of normalization
// to use during the computation of the Gaussians. The method
// \code{SetNormalizeAcrossScale()} serves this purpose.
// \index{SmoothingRecursiveGaussianImageFilter!SetNormalizeAcrossScale()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetNormalizeAcrossScale( false );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another filter. Here,
// an image reader is used as source. The image is passed directly to the
// smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// It is now time for selecting the $\sigma$ of the Gaussian to use for
// smoothing the data. Note that $\sigma$ is considered to be in
// millimeters. That is, at the moment of applying the smoothing process,
// the filter will take into account the spacing values defined in the
// image.
//
// \index{itk::SmoothingRecursiveGaussianImageFilter!SetSigma()}
// \index{SetSigma()!itk::SmoothingRecursiveGaussianImageFilter}
//
// Software Guide : EndLatex
const double sigma = atof( argv[3] );
// Software Guide : BeginCodeSnippet
filter->SetSigma( sigma );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally the pipeline is executed by invoking the \code{Update()} method.
//
// \index{itk::SmoothingRecursiveGaussianImageFilter!Update()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->Update();
// Software Guide : EndCodeSnippet
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::RescaleIntensityImageFilter<
OutputImageType, WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
rescaler->SetInput( filter->GetOutput() );
writer->SetInput( rescaler->GetOutput() );
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{SmoothingRecursiveGaussianImageFilterOutput3}
// \includegraphics[width=0.44\textwidth]{SmoothingRecursiveGaussianImageFilterOutput5}
// \itkcaption[SmoothingRecursiveGaussianImageFilter output]{Effect of the
// SmoothingRecursiveGaussianImageFilter on a slice from a MRI proton density image of the brain.}
// \label{fig:SmoothingRecursiveGaussianImageFilterInputOutput}
// \end{figure}
//
// Figure \ref{fig:SmoothingRecursiveGaussianImageFilterInputOutput}
// illustrates the effect of this filter on a MRI proton density image of
// the brain using a $\sigma$ value of $3$ (left) and a value of $5$
// (right). The figure shows how the attenuation of noise can be
// regulated by selecting an appropriate sigma. This type of scale-tunable
// filter is suitable for performing scale-space analysis.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|