File: SmoothingRecursiveGaussianImageFilter2.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (223 lines) | stat: -rw-r--r-- 7,388 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  Setting up a pipeline of $m$ filters in order to smooth an N-dimensional
//  image may be a lot of work to do for achieving a simple goal. In order to
//  avoid this inconvenience, a filter packaging this $m$ filters internally
//  is available. This filter is the
//  \doxygen{SmoothingRecursiveGaussianImageFilter}.
//
//  \index{itk::SmoothingRecursiveGaussianImageFilter}
//
//  Software Guide : EndLatex


#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

//  Software Guide : BeginLatex
//
//  In order to use this filter the following header file must be included.
//
//  \index{itk::SmoothingRecursiveGaussianImageFilter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkSmoothingRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet


int main( int argc, char * argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << "  inputImageFile  outputImageFile  sigma " << std::endl;
    return EXIT_FAILURE;
    }


  //  Software Guide : BeginLatex
  //
  //  Appropriate pixel types must be selected to support input and output
  //  images.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef    float    InputPixelType;
  typedef    float    OutputPixelType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  With them, the input and output image types can be instantiated.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Image< InputPixelType,  2 >   InputImageType;
  typedef itk::Image< OutputPixelType, 2 >   OutputImageType;
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< InputImageType >  ReaderType;


  //  Software Guide : BeginLatex
  //
  //  The filter type is now instantiated using both the input image and the
  //  output image types. If the second template parameter is omitted, the
  //  filter will assume that the output image has the same type as the input
  //  image.
  //
  //  \index{itk::SmoothingRecursiveGaussianImageFilter!Instantiation}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::SmoothingRecursiveGaussianImageFilter<
                        InputImageType, OutputImageType >  FilterType;
  // Software Guide : EndCodeSnippet


  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );


  //  Software Guide : BeginLatex
  //
  //  Now a single filter is enough for smoothing the image along all the
  //  dimensions.  The filter is created by invoking the \code{New()} method
  //  and assigning the result to a \doxygen{SmartPointer}.
  //
  //  \index{itk::SmoothingRecursiveGaussianImageFilter!New()}
  //  \index{itk::SmoothingRecursiveGaussianImageFilter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  As in the previous examples we should decide what type of normalization
  //  to use during the computation of the Gaussians. The method
  //  \code{SetNormalizeAcrossScale()} serves this purpose.
  //  \index{SmoothingRecursiveGaussianImageFilter!SetNormalizeAcrossScale()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetNormalizeAcrossScale( false );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The input image can be obtained from the output of another filter. Here,
  //  an image reader is used as source. The image is passed directly to the
  //  smoothing filter.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetInput( reader->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  It is now time for selecting the $\sigma$ of the Gaussian to use for
  //  smoothing the data. Note that $\sigma$ is considered to be in
  //  millimeters.  That is, at the moment of applying the smoothing process,
  //  the filter will take into account the spacing values defined in the
  //  image.
  //
  //  \index{itk::SmoothingRecursiveGaussianImageFilter!SetSigma()}
  //  \index{SetSigma()!itk::SmoothingRecursiveGaussianImageFilter}
  //
  //  Software Guide : EndLatex

  const double sigma = atof( argv[3] );

  // Software Guide : BeginCodeSnippet
  filter->SetSigma( sigma );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Finally the pipeline is executed by invoking the \code{Update()} method.
  //
  //  \index{itk::SmoothingRecursiveGaussianImageFilter!Update()}
  //
  //  Software Guide : EndLatex


  // Software Guide : BeginCodeSnippet
  filter->Update();
  // Software Guide : EndCodeSnippet


  typedef  unsigned char                             WritePixelType;
  typedef itk::Image< WritePixelType, 2 >            WriteImageType;
  typedef itk::RescaleIntensityImageFilter<
                   OutputImageType, WriteImageType > RescaleFilterType;

  RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
  rescaler->SetOutputMinimum(   0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< WriteImageType >  WriterType;
  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );
  rescaler->SetInput( filter->GetOutput() );
  writer->SetInput( rescaler->GetOutput() );
  writer->Update();


  //  Software Guide : BeginLatex
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{SmoothingRecursiveGaussianImageFilterOutput3}
  // \includegraphics[width=0.44\textwidth]{SmoothingRecursiveGaussianImageFilterOutput5}
  // \itkcaption[SmoothingRecursiveGaussianImageFilter output]{Effect of the
  // SmoothingRecursiveGaussianImageFilter on a slice from a MRI proton density image of the brain.}
  // \label{fig:SmoothingRecursiveGaussianImageFilterInputOutput}
  // \end{figure}
  //
  //  Figure \ref{fig:SmoothingRecursiveGaussianImageFilterInputOutput}
  //  illustrates the effect of this filter on a MRI proton density image of
  //  the brain using a $\sigma$ value of $3$ (left) and a value of $5$
  //  (right).  The figure shows how the attenuation of noise can be
  //  regulated by selecting an appropriate sigma.  This type of scale-tunable
  //  filter is suitable for performing scale-space analysis.
  //
  //  Software Guide : EndLatex


  return EXIT_SUCCESS;
}