1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to perform subsampling of a volume using ITK
// classes. In order to avoid aliasing artifacts, the volume must be
// processed by a low-pass filter before resampling. Here we use the
// \doxygen{RecursiveGaussianImageFilter} as a low-pass filter. The image is
// then resampled by using three different factors, one per dimension of the
// image.
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
// Software Guide : BeginLatex
//
// The most important headers to include here are those corresponding to the
// resampling image filter, the transform, the interpolator and the smoothing
// filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkResampleImageFilter.h"
#include "itkIdentityTransform.h"
#include "itkRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkCastImageFilter.h"
int main( int argc, char * argv[] )
{
if( argc < 6 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0]
<< " inputImageFile outputImageFile factorX factorY factorZ"
<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We explicitly instantiate the pixel type and dimension of the input image,
// and the images that will be used internally for computing the resampling.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int Dimension = 3;
typedef unsigned char InputPixelType;
typedef float InternalPixelType;
typedef unsigned char OutputPixelType;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// In this particular case we take the factors for resampling directly from the
// command line arguments.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const double factorX = atof( argv[3] );
const double factorY = atof( argv[4] );
const double factorZ = atof( argv[5] );
// Software Guide : EndCodeSnippet
try
{
reader->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception catched !" << std::endl;
std::cerr << excep << std::endl;
}
InputImageType::ConstPointer inputImage = reader->GetOutput();
// Software Guide : BeginLatex
//
// A casting filter is instantiated in order to convert the pixel type of the
// input image into the pixel type desired for computing the resampling.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CastImageFilter< InputImageType,
InternalImageType > CastFilterType;
CastFilterType::Pointer caster = CastFilterType::New();
caster->SetInput( inputImage );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The smoothing filter of choice is the \code{RecursiveGaussianImageFilter}.
// We create three of them in order to have the freedom of performing smoothing
// with different sigma values along each dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RecursiveGaussianImageFilter<
InternalImageType,
InternalImageType > GaussianFilterType;
GaussianFilterType::Pointer smootherX = GaussianFilterType::New();
GaussianFilterType::Pointer smootherY = GaussianFilterType::New();
GaussianFilterType::Pointer smootherZ = GaussianFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The smoothing filters are connected in a cascade in the pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smootherX->SetInput( caster->GetOutput() );
smootherY->SetInput( smootherX->GetOutput() );
smootherZ->SetInput( smootherY->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The sigma values to use in the smoothing filters are computed based on the
// pixel spacing of the input image and the factors provided as arguments.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const InputImageType::SpacingType& inputSpacing = inputImage->GetSpacing();
const double sigmaX = inputSpacing[0] * factorX;
const double sigmaY = inputSpacing[1] * factorY;
const double sigmaZ = inputSpacing[2] * factorZ;
smootherX->SetSigma( sigmaX );
smootherY->SetSigma( sigmaY );
smootherZ->SetSigma( sigmaZ );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instruct each one of the smoothing filters to act along a particular
// direction of the image, and set them to use normalization across scale space
// in order to account for the reduction of intensity that accompanies the
// diffusion process associated with the Gaussian smoothing.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smootherX->SetDirection( 0 );
smootherY->SetDirection( 1 );
smootherZ->SetDirection( 2 );
smootherX->SetNormalizeAcrossScale( false );
smootherY->SetNormalizeAcrossScale( false );
smootherZ->SetNormalizeAcrossScale( false );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The type of the resampling filter is instantiated using the internal image
// type and the output image type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ResampleImageFilter<
InternalImageType, OutputImageType > ResampleFilterType;
ResampleFilterType::Pointer resampler = ResampleFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the resampling is performed in the same physical extent of the input
// image, we select the IdentityTransform as the one to be used by the resampling
// filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::IdentityTransform< double, Dimension > TransformType;
TransformType::Pointer transform = TransformType::New();
transform->SetIdentity();
resampler->SetTransform( transform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The Linear interpolator is selected because it provides a good run-time
// performance. For applications that require better precision you may want to
// replace this interpolator with the \doxygen{BSplineInterpolateImageFunction}
// interpolator or with the \doxygen{WindowedSincInterpolateImageFunction}
// interpolator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::LinearInterpolateImageFunction<
InternalImageType, double > InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
resampler->SetInterpolator( interpolator );
// Software Guide : EndCodeSnippet
resampler->SetDefaultPixelValue( 0 ); // value for regions without source
// Software Guide : BeginLatex
//
// The spacing to be used in the grid of the resampled image is computed using
// the input image spacing and the factors provided in the command line
// arguments.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OutputImageType::SpacingType spacing;
spacing[0] = inputSpacing[0] * factorX;
spacing[1] = inputSpacing[1] * factorY;
spacing[2] = inputSpacing[2] * factorZ;
resampler->SetOutputSpacing( spacing );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The origin and direction of the input image are both preserved and passed to
// the output image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetOutputOrigin( inputImage->GetOrigin() );
resampler->SetOutputDirection( inputImage->GetDirection() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The number of pixels to use along each direction on the grid of the
// resampled image is computed using the number of pixels in the input image
// and the sampling factors.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
InputImageType::SizeType inputSize =
inputImage->GetLargestPossibleRegion().GetSize();
typedef InputImageType::SizeType::SizeValueType SizeValueType;
InputImageType::SizeType size;
size[0] = static_cast< SizeValueType >( inputSize[0] / factorX );
size[1] = static_cast< SizeValueType >( inputSize[1] / factorY );
size[2] = static_cast< SizeValueType >( inputSize[2] / factorZ );
resampler->SetSize( size );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the input to the resampler is taken from the output of the
// smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetInput( smootherZ->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// At this point we can trigger the execution of the resampling by calling the
// \code{Update()} method, or we can choose to pass the output of the resampling
// filter to another section of pipeline, for example, an image writer.
//
// Software Guide : EndLatex
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput( resampler->GetOutput() );
writer->SetFileName( argv[2] );
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception catched !" << std::endl;
std::cerr << excep << std::endl;
}
std::cout << "Resampling Done !" << std::endl;
return EXIT_SUCCESS;
}
|