File: SurfaceExtraction.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (227 lines) | stat: -rw-r--r-- 7,179 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  Surface extraction has attracted continuous interest since the early days
//  of image analysis, especially in the context of medical applications.
//  Although it is commonly associated with image segmentation, surface
//  extraction is not in itself a segmentation technique, instead it is a
//  transformation that changes the way a segmentation is represented. In its
//  most common form, isosurface extraction is the equivalent of image
//  thresholding followed by surface extraction.
//
//  Probably the most widely known method of surface extraction is the
//  \emph{Marching Cubes} algorithm~\cite{MarchingCubes}. Although it has been
//  followed by a number of variants~\cite{VTKBook}, Marching Cubes has become
//  an icon in medical image processing. The following example illustrates how
//  to perform surface extraction in ITK using an algorithm similar to Marching
//  Cubes~\footnote{Note that the Marching Cubes algorithm is covered by a
//  patent that expired on June 5th 2005.}.
//
//  Software Guide : EndLatex


#include "itkImageFileReader.h"


// Software Guide : BeginLatex
//
// The representation of unstructured data in ITK is done with
// the \doxygen{Mesh}. This class enables us to represent $N$-Dimensional grids of
// varied topology. It is natural for the filter that extracts surfaces from an
// image to produce a mesh as its output.
//
// We initiate our example by including the header files of the surface
// extraction filter, the image and the mesh.
//
// \index{Marching Cubes}
// \index{Isosurface extraction!Mesh}
// \index{BinaryMask3DMeshSource!Header}
// \index{Mesh!Isosurface extraction}
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkBinaryMask3DMeshSource.h"
#include "itkImage.h"
// Software Guide : EndCodeSnippet


int main(int argc, char * argv[] )
{

  if( argc < 3 )
    {
    std::cerr << "Usage: IsoSurfaceExtraction  inputImageFile   objectValue " << std::endl;
    return EXIT_FAILURE;
    }


// Software Guide : BeginLatex
//
// We define then the pixel type and dimension of the image from which we are
// going to extract the surface.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  const unsigned int Dimension = 3;
  typedef unsigned char  PixelType;

  typedef itk::Image< PixelType, Dimension >   ImageType;
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// With the same image type we instantiate the type of an ImageFileReader and
// construct one with the purpose of reading in the input image.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::ImageFileReader< ImageType >    ReaderType;
  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );
// Software Guide : EndCodeSnippet

  try
    {
    reader->Update();
    }
  catch( itk::ExceptionObject & exp )
    {
    std::cerr << "Exception thrown while reading the input file " << std::endl;
    std::cerr << exp << std::endl;
    return EXIT_FAILURE;
    }


// Software Guide : BeginLatex
//
// The type of the \doxygen{Mesh} is instantiated by specifying the type to be
// associated with the pixel value of the Mesh nodes. This particular pixel
// type happens to be irrelevant for the purpose of extracting the surface.
//
// \index{BinaryMask3DMeshSource!Instantiation}
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::Mesh<double>                         MeshType;
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// Having declared the Image and Mesh types we can now instantiate the
// surface extraction filter, and construct one by invoking its \code{New()}
// method.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  typedef itk::BinaryMask3DMeshSource< ImageType, MeshType >   MeshSourceType;

  MeshSourceType::Pointer meshSource = MeshSourceType::New();
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// In this example, the pixel value associated with the object
// to be extracted is read from the command line arguments and it is passed to
// the filter by using the \code{SetObjectValue()} method. Note that this is
// different from the traditional isovalue used in the Marching Cubes
// algorithm.  In the case of the \code{BinaryMask3DMeshSource} filter, the
// object values define the membership of pixels to the object from which the
// surface will be extracted. In other words, the surface will be surrounding
// all pixels with value equal to the ObjectValue parameter.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  const PixelType objectValue = static_cast<PixelType>( atof( argv[2] ) );

  meshSource->SetObjectValue( objectValue );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// The input to the surface extraction filter is taken from the output of
// the image reader.
//
// \index{BinaryMask3DMeshSource!SetInput}
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
  meshSource->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// Finally we trigger the execution of the pipeline by invoking the
// \code{Update()} method. Given that the pipeline may throw an exception this
// call must be place inside a \code{try/catch} block.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  try
    {
    meshSource->Update();
    }
  catch( itk::ExceptionObject & exp )
    {
    std::cerr << "Exception thrown during Update() " << std::endl;
    std::cerr << exp << std::endl;
    return EXIT_FAILURE;
    }
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// We print out the number of nodes and cells in order to inspect the
// output mesh.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  std::cout << "Nodes = " << meshSource->GetNumberOfNodes() << std::endl;
  std::cout << "Cells = " << meshSource->GetNumberOfCells() << std::endl;
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// This resulting Mesh could be used as input for a deformable model
// segmentation algorithm, or it could be converted to a format suitable for
// visualization in an interactive application.
//
// Software Guide : EndLatex


  return EXIT_SUCCESS;
}