1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// The \doxygen{VectorCurvatureAnisotropicDiffusionImageFilter} performs
// anisotropic diffusion on a vector image using a modified curvature
// diffusion equation (MCDE). The MCDE is the same described in
// \ref{sec:CurvatureAnisotropicDiffusionImageFilter}.
//
// Typically in vector-valued diffusion, vector components are diffused
// independently of one another using a conductance term that is linked across
// the components.
//
// This filter is designed to process images of \doxygen{Vector} type. The
// code relies on various typedefs and overloaded operators defined in
// \doxygen{Vector}. It is perfectly reasonable, however, to apply this
// filter to images of other, user-defined types as long as the appropriate
// typedefs and operator overloads are in place. As a general rule, follow
// the example of the \doxygen{Vector} class in defining your data types.
//
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
//
// Software Guide : EndLatex
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkVectorIndexSelectionCastImageFilter.h"
// Software Guide : BeginLatex
//
// The first step required to use this filter is to include its header file.
//
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 6 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputGradientImageFile ";
std::cerr << "outputSmoothedGradientImageFile ";
std::cerr << "numberOfIterations timeStep " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Types should be selected based on required pixel type for the input and
// output images. The image types are defined using the pixel type and
// the dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InputPixelType;
typedef itk::CovariantVector< float, 2 > VectorPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< VectorPixelType, 2 > VectorImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
// Software Guide : BeginLatex
//
// The filter type is now instantiated using both the input image and the
// output image types. The filter object is created by the \code{New()}
// method.
//
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!instantiation}
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!New()}
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::VectorCurvatureAnisotropicDiffusionImageFilter<
VectorImageType, VectorImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
typedef itk::GradientRecursiveGaussianImageFilter<
InputImageType, VectorImageType > GradientFilterType;
GradientFilterType::Pointer gradient = GradientFilterType::New();
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another filter. Here,
// an image reader is used as source and its data is passed through a
// gradient filter in order to generate an image of vectors.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
gradient->SetInput( reader->GetOutput() );
filter->SetInput( gradient->GetOutput() );
// Software Guide : EndCodeSnippet
const unsigned int numberOfIterations = atoi( argv[4] );
const double timeStep = atof( argv[5] );
// Software Guide : BeginLatex
//
// This filter requires two parameters: the number of iterations to be
// performed and the time step used in the computation of the level set
// evolution. These parameters are set using the methods
// \code{SetNumberOfIterations()} and \code{SetTimeStep()} respectively.
// The filter can be executed by invoking \code{Update()}.
//
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!Update()}
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetTimeStep()}
// \index{itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter!SetNumberOfIterations()}
// \index{SetTimeStep()!itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
// \index{SetNumberOfIterations()!itk::Vector\-Curvature\-Anisotropic\-Diffusion\-Image\-Filter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetNumberOfIterations( numberOfIterations );
filter->SetTimeStep( timeStep );
filter->SetConductanceParameter(1.0);
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Typical values for the time step are $0.125$ in $2D$ images and
// $0.0625$ in $3D$ images. The number of iterations can be usually around
// $5$, however more iterations will result in further smoothing and will
// increase the computing time linearly.
//
// Software Guide : EndLatex
//
// If the output of this filter has been connected to other filters down the
// pipeline, updating any of the downstream filters would have triggered the
// execution of this one. For example, a writer filter could have been used
// after the curvature flow filter.
//
typedef float OutputPixelType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;
typedef itk::VectorIndexSelectionCastImageFilter<
VectorImageType, OutputImageType > ComponentFilterType;
ComponentFilterType::Pointer component = ComponentFilterType::New();
// Select the component to extract.
component->SetIndex( 0 );
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::RescaleIntensityImageFilter<
OutputImageType, WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
rescaler->SetInput( component->GetOutput() );
writer->SetInput( rescaler->GetOutput() );
// Save the component of the original gradient
component->SetInput( gradient->GetOutput() );
writer->SetFileName( argv[2] );
writer->Update();
// Save the component of the smoothed gradient
component->SetInput( filter->GetOutput() );
writer->SetFileName( argv[3] );
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{VectorCurvatureAnisotropicDiffusionImageFilterInput}
// \includegraphics[width=0.44\textwidth]{VectorCurvatureAnisotropicDiffusionImageFilterOutput}
// \itkcaption[VectorCurvatureAnisotropicDiffusionImageFilter output]{Effect
// of the VectorCurvatureAnisotropicDiffusionImageFilter on the $X$ component
// of the gradient from a MRIproton density brain image.}
// \label{fig:VectorCurvatureAnisotropicDiffusionImageFilterInputOutput}
// \end{figure}
//
// Figure~\ref{fig:VectorCurvatureAnisotropicDiffusionImageFilterInputOutput}
// illustrates the effect of this filter on a MRI proton density image of
// the brain. The images show the $X$ component of the gradient before
// (left) and after (right) the application of the filter. In this example
// the filter was run with a time step of 0.25, and 5 iterations.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|