File: CovariantVectorImageRead.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (243 lines) | stat: -rw-r--r-- 8,391 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  This example illustrates how to read an image whose pixel type is
//  \code{CovariantVector}. For practical purposes this example is applicable
//  to images of pixel type \doxygen{Vector}, \doxygen{Point} and
//  \doxygen{FixedArray}. These pixel types are similar in that they are all
//  arrays of fixed size in which the components have the same representation
//  type.
//
//  In this example we are reading a gradient image from a file (written in
//  the previous example) and computing its magnitude using the
//  \doxygen{VectorMagnitudeImageFilter}. Note that this filter is
//  different from the \doxygen{GradientMagnitudeImageFilter} which actually
//  takes a scalar image as input and computes the magnitude of its gradient.
//  The VectorMagnitudeImageFilter class takes an image of vector
//  pixel type as input and computes pixel-wise the magnitude of each vector.
//
//  Let's start by including the relevant header files.
//
//  \index{ImageFileRead!Vector images}
//  \index{VectorMagnitudeImageFilter!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkVectorMagnitudeImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : EndCodeSnippet


#include "itkImage.h"


int main( int argc, char ** argv )
{
  // Verify the number of parameters in the command line
  if( argc < 3 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " inputImageFile  outputVectorImageFile " << std::endl;
    return EXIT_FAILURE;
    }


  //  Software Guide : BeginLatex
  //
  //  We read an image of \doxygen{CovariantVector} pixels and compute pixel
  //  magnitude to produce an image where each pixel is of type
  //  \code{unsigned short}. The components of the CovariantVector
  //  are selected to be \code{float} here. Notice that a renormalization is
  //  required in order to map the dynamic range of the magnitude values into
  //  the range of the output pixel type.  The
  //  \doxygen{RescaleIntensityImageFilter} is used to achieve this.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef float                 ComponentType;
  const   unsigned int          Dimension = 2;

  typedef itk::CovariantVector< ComponentType,
                                    Dimension  >      InputPixelType;

  typedef float                                       MagnitudePixelType;
  typedef unsigned short                              OutputPixelType;

  typedef itk::Image< InputPixelType,      Dimension >    InputImageType;
  typedef itk::Image< MagnitudePixelType,  Dimension >    MagnitudeImageType;
  typedef itk::Image< OutputPixelType,     Dimension >    OutputImageType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The \doxygen{ImageFileReader} and \doxygen{ImageFileWriter}
  //  are instantiated using the image types.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::ImageFileReader< InputImageType  >  ReaderType;
  typedef itk::ImageFileWriter< OutputImageType >  WriterType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The VectorMagnitudeImageFilter is instantiated using the
  //  input and output image types. A filter object is created with the
  //  \code{New()} method and assigned to a \doxygen{SmartPointer}.
  //
  //  \index{VectorMagnitudeImageFilter!Instantiation}
  //  \index{VectorMagnitudeImageFilter!New()}
  //  \index{VectorMagnitudeImageFilter!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::VectorMagnitudeImageFilter<
                                          InputImageType,
                                          MagnitudeImageType    > FilterType;

  FilterType::Pointer filter = FilterType::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The RescaleIntensityImageFilter class is instantiated next.
  //
  //  \index{RescaleIntensityImageFilter!Instantiation}
  //  \index{RescaleIntensityImageFilter!New()}
  //  \index{RescaleIntensityImageFilter!Pointer}
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  typedef itk::RescaleIntensityImageFilter<
                                  MagnitudeImageType,
                                  OutputImageType >      RescaleFilterType;

  RescaleFilterType::Pointer  rescaler = RescaleFilterType::New();
  //  Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  In the following the minimum and maximum values for the output image
  //  are specified. Note the use of the \doxygen{NumericTraits} class which
  //  allows us to define a number of type-related constants in a generic
  //  way. The use of traits is a fundamental characteristic of generic
  //  programming~\cite{Austern1999,Alexandrescu2001}.
  //
  //  \index{RescaleIntensityImageFilter!SetOutputMinimum()}
  //  \index{RescaleIntensityImageFilter!SetOutputMaximum()}
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  rescaler->SetOutputMinimum( itk::NumericTraits< OutputPixelType >::min() );
  rescaler->SetOutputMaximum( itk::NumericTraits< OutputPixelType >::max() );
  //  Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Below, we create the reader and writer using the \code{New()} method and
  //  assign the result to a \doxygen{SmartPointer}.
  //
  //  \index{itk::ImageFileReader!New()}
  //  \index{itk::ImageFileWriter!New()}
  //  \index{itk::ImageFileReader!SmartPointer}
  //  \index{itk::ImageFileWriter!SmartPointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();
  // Software Guide : EndCodeSnippet


  // Here we recover the file names from the command line arguments
  //
  const char * inputFilename  = argv[1];
  const char * outputFilename = argv[2];


  //  Software Guide : BeginLatex
  //
  //  The name of the file to be read or written is passed with the
  //  \code{SetFileName()} method.
  //
  //  \index{itk::ImageFileReader!SetFileName()}
  //  \index{itk::ImageFileWriter!SetFileName()}
  //  \index{SetFileName()!itk::ImageFileReader}
  //  \index{SetFileName()!itk::ImageFileWriter}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  reader->SetFileName( inputFilename  );
  writer->SetFileName( outputFilename );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Below we connect the reader, filter and writer to form the data
  //  processing pipeline.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetInput( reader->GetOutput() );
  rescaler->SetInput( filter->GetOutput() );
  writer->SetInput( rescaler->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Finally we execute the pipeline by invoking \code{Update()} on the
  //  writer. The call is placed in a \code{try/catch} block in case exceptions
  //  are thrown.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & err )
    {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
    }
  // Software Guide : EndCodeSnippet

  return EXIT_SUCCESS;
}