1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// \index{Iterators!and image slices}
//
// The \doxygen{ImageSliceIteratorWithIndex} class is an extension of
// \doxygen{ImageLinearIteratorWithIndex} from iteration along lines to
// iteration along both lines \emph{and planes} in an image.
// A \emph{slice} is a 2D
// plane spanned by two vectors pointing along orthogonal coordinate axes. The
// slice orientation of the slice iterator is defined by specifying its two
// spanning axes.
//
// \begin{itemize}
// \index{itk::Image\-Slice\-Iterator\-With\-Index!SetFirstDirection()}
// \item \textbf{\code{SetFirstDirection()}}
// Specifies the first coordinate axis
// direction of the slice plane.
//
// \index{itk::Image\-Slice\-Iterator\-With\-Index!SetSecondDirection()}
// \item \textbf{\code{SetSecondDirection()}}
// Specifies the second coordinate axis
// direction of the slice plane.
// \end{itemize}
//
// Several new methods control movement from slice to slice.
//
// \begin{itemize}
//
// \index{itk::Image\-Slice\-Iterator\-With\-Index!NextSlice()}
// \item \textbf{\code{NextSlice()}} Moves the iterator to the beginning pixel
// location of the next slice in the image. The origin of the next slice is
// calculated by incrementing the current origin index along the fastest
// increasing dimension of the image subspace which excludes the first and
// second dimensions of the iterator.
//
// \index{itk::Image\-Slice\-Iterator\-With\-Index!PreviousSlice()}
// \item \textbf{\code{PreviousSlice()}} Moves the iterator to the \emph{last
// valid pixel location} in the previous slice. The origin of the previous
// slice is calculated by decrementing the current origin index along the
// fastest increasing dimension of the image subspace which excludes the first
// and second dimensions of the iterator.
//
// \index{itk::Image\-Slice\-Iterator\-With\-Index!IsAtReverseEndOfSlice()}
// \item \textbf{\code{IsAtReverseEndOfSlice()}} Returns true if the iterator
// points to \emph{one position before} the beginning pixel of the current
// slice.
//
// \index{itk::Image\-Slice\-Iterator\-With\-Index!IsAtEndOfSlice()}
// \item \textbf{\code{IsAtEndOfSlice()}} Returns true if the iterator points
// to \emph{one position past} the last valid pixel of the current slice.
//
// \end{itemize}
//
// The slice iterator moves line by line using \code{NextLine()} and
// \code{PreviousLine()}. The line direction is parallel to the \emph{second}
// coordinate axis direction of the slice plane (see also
// Section~\ref{sec:itkImageLinearIteratorWithIndex}).
//
// \index{itk::Image\-Slice\-Iterator\-With\-Index!example of using|(}
// The next code example calculates the maximum intensity projection along one
// of the coordinate axes of an image volume. The algorithm is straightforward
// using ImageSliceIteratorWithIndex because we can coordinate
// movement through a slice of the 3D input image with movement through the 2D
// planar output.
//
// Here is how the algorithm works. For each 2D slice of the input, iterate
// through all the pixels line by line. Copy a pixel value to the corresponding
// position in the 2D output image if it is larger than the value already
// contained there. When all slices have been processed, the output image is
// the desired maximum intensity projection.
//
// We include a header for the const version of the slice iterator. For writing
// values to the 2D projection image, we use the linear iterator from the
// previous section. The linear iterator is chosen because it can be set to
// follow the same path in its underlying 2D image that the slice iterator
// follows over each slice of the 3D image.
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkMath.h"
// Software Guide : BeginCodeSnippet
#include "itkImageSliceConstIteratorWithIndex.h"
#include "itkImageLinearIteratorWithIndex.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
int main( int argc, char *argv[] )
{
// Verify the number of parameters on the command line.
if ( argc < 4 )
{
std::cerr << "Missing parameters. " << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0]
<< " inputImageFile outputImageFile projectionDirection"
<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The pixel type is defined as \code{unsigned short}. For this application,
// we need two image types, a 3D image for the input, and a 2D image for the
// intensity projection.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned short PixelType;
typedef itk::Image< PixelType, 2 > ImageType2D;
typedef itk::Image< PixelType, 3 > ImageType3D;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// A slice iterator type is defined to walk the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageLinearIteratorWithIndex< ImageType2D > LinearIteratorType;
typedef itk::ImageSliceConstIteratorWithIndex< ImageType3D
> SliceIteratorType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< ImageType3D > ReaderType;
typedef itk::ImageFileWriter< ImageType2D > WriterType;
ImageType3D::ConstPointer inputImage;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
inputImage = reader->GetOutput();
}
catch ( itk::ExceptionObject &err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The projection direction is read from the command line. The projection image
// will be the size of the 2D plane orthogonal to the projection direction.
// Its spanning vectors are the two remaining coordinate axes in the volume.
// These axes are recorded in the \code{direction} array.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
unsigned int projectionDirection =
static_cast<unsigned int>( ::atoi( argv[3] ) );
unsigned int i, j;
unsigned int direction[2];
for (i = 0, j = 0; i < 3; ++i )
{
if (i != projectionDirection)
{
direction[j] = i;
j++;
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{direction} array is now used to define the projection image size
// based on the input image size. The output image is created so that its
// common dimension(s) with the input image are the same size. For example,
// if we project along the $x$ axis of the input, the size and origin of the
// $y$ axes of the input and output will match. This makes the code slightly
// more complicated, but prevents a counter-intuitive rotation of the output.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType2D::RegionType region;
ImageType2D::RegionType::SizeType size;
ImageType2D::RegionType::IndexType index;
ImageType3D::RegionType requestedRegion = inputImage->GetRequestedRegion();
index[ direction[0] ] = requestedRegion.GetIndex()[ direction[0] ];
index[ 1- direction[0] ] = requestedRegion.GetIndex()[ direction[1] ];
size[ direction[0] ] = requestedRegion.GetSize()[ direction[0] ];
size[ 1- direction[0] ] = requestedRegion.GetSize()[ direction[1] ];
region.SetSize( size );
region.SetIndex( index );
ImageType2D::Pointer outputImage = ImageType2D::New();
outputImage->SetRegions( region );
outputImage->Allocate();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we create the necessary iterators. The const slice iterator walks
// the 3D input image, and the non-const linear iterator walks the 2D output
// image. The iterators are initialized to walk the same linear path through
// a slice. Remember that the \emph{second} direction of the slice iterator
// defines the direction that linear iteration walks within a slice.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
SliceIteratorType inputIt( inputImage, inputImage->GetRequestedRegion() );
LinearIteratorType outputIt( outputImage,
outputImage->GetRequestedRegion() );
inputIt.SetFirstDirection( direction[1] );
inputIt.SetSecondDirection( direction[0] );
outputIt.SetDirection( 1 - direction[0] );
// Software Guide : EndCodeSnippet
// Software Guide: BeginLatex
//
// Now we are ready to compute the projection. The first step is to initialize
// all of the projection values to their nonpositive minimum value. The
// projection values are then updated row by row from the first slice of the
// input. At the end of the first slice, the input iterator steps to the first
// row in the next slice, while the output iterator, whose underlying image
// consists of only one slice, rewinds to its first row. The process repeats
// until the last slice of the input is processed.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
outputIt.GoToBegin();
while ( ! outputIt.IsAtEnd() )
{
while ( ! outputIt.IsAtEndOfLine() )
{
outputIt.Set( itk::NumericTraits<unsigned short>::NonpositiveMin() );
++outputIt;
}
outputIt.NextLine();
}
inputIt.GoToBegin();
outputIt.GoToBegin();
while( !inputIt.IsAtEnd() )
{
while ( !inputIt.IsAtEndOfSlice() )
{
while ( !inputIt.IsAtEndOfLine() )
{
outputIt.Set( std::max( outputIt.Get(), inputIt.Get() ));
++inputIt;
++outputIt;
}
outputIt.NextLine();
inputIt.NextLine();
}
outputIt.GoToBegin();
inputIt.NextSlice();
}
// Software Guide : EndCodeSnippet
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
writer->SetInput(outputImage);
try
{
writer->Update();
}
catch ( itk::ExceptionObject &err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Running this example code on the 3D image
// \code{Examples/Data/BrainProtonDensity3Slices.mha} using the $z$-axis as
// the axis of projection gives the image shown in
// Figure~\ref{fig:ImageSliceIteratorWithIndexOutput}.
//
// \begin{figure}
// \centering
// \includegraphics[width=0.4\textwidth]{ImageSliceIteratorWithIndexOutput}
// \itkcaption[Maximum intensity projection using ImageSliceIteratorWithIndex]{The
// maximum intensity projection through three slices of a volume.}
// \protect\label{fig:ImageSliceIteratorWithIndexOutput}
// \end{figure}
//
//
// \index{itk::Image\-Slice\-Iterator\-With\-Index!example of using|)}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|