1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1Slice.png}
// OUTPUTS: {NeighborhoodIterators4a.png}
// ARGUMENTS: 0
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1Slice.png}
// OUTPUTS: {NeighborhoodIterators4b.png}
// ARGUMENTS: 1
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1Slice.png}
// OUTPUTS: {NeighborhoodIterators4c.png}
// ARGUMENTS: 2
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1Slice.png}
// OUTPUTS: {NeighborhoodIterators4d.png}
// ARGUMENTS: 5
// Software Guide : EndCommandLineArgs
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhoodInnerProduct.h"
// Software Guide : BeginLatex
//
// We now introduce a variation on convolution filtering that is useful when a
// convolution kernel is separable. In this example, we create a different
// neighborhood iterator for each axial direction of the image and then take
// separate inner products with a 1D discrete Gaussian kernel.
// The idea of using several neighborhood iterators at once has applications
// beyond convolution filtering and may improve efficiency when the size of
// the whole neighborhood relative to the portion of the neighborhood used
// in calculations becomes large.
//
// The only new class necessary for this example is the Gaussian operator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkGaussianOperator.h"
// Software Guide : EndCodeSnippet
int main( int argc, char ** argv )
{
if ( argc < 4 )
{
std::cerr << "Missing parameters. " << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0]
<< " inputImageFile outputImageFile sigma"
<< std::endl;
return EXIT_FAILURE;
}
typedef float PixelType;
typedef itk::Image< PixelType, 2 > ImageType;
typedef itk::ImageFileReader< ImageType > ReaderType;
typedef itk::ConstNeighborhoodIterator< ImageType > NeighborhoodIteratorType;
typedef itk::ImageRegionIterator< ImageType> IteratorType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch ( itk::ExceptionObject &err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
ImageType::Pointer output = ImageType::New();
output->SetRegions(reader->GetOutput()->GetRequestedRegion());
output->Allocate();
itk::NeighborhoodInnerProduct<ImageType> innerProduct;
typedef itk::NeighborhoodAlgorithm
::ImageBoundaryFacesCalculator< ImageType > FaceCalculatorType;
FaceCalculatorType faceCalculator;
FaceCalculatorType::FaceListType faceList;
FaceCalculatorType::FaceListType::iterator fit;
IteratorType out;
NeighborhoodIteratorType it;
// Software Guide : BeginLatex
//
// The Gaussian operator, like the Sobel operator, is instantiated with a pixel
// type and a dimensionality. Additionally, we set the variance of the
// Gaussian, which has been read from the command line as standard deviation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
itk::GaussianOperator< PixelType, 2 > gaussianOperator;
gaussianOperator.SetVariance( ::atof(argv[3]) * ::atof(argv[3]) );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The only further changes from the previous example are in the main loop.
// Once again we use the results from face calculator to construct a loop that
// processes boundary and non-boundary image regions separately. Separable
// convolution, however, requires an additional, outer loop over all the image
// dimensions. The direction of the Gaussian operator is reset at each
// iteration of the outer loop using the new dimension. The iterators change
// direction to match because they are initialized with the radius of the
// Gaussian operator.
//
// Input and output buffers are swapped at each iteration so that the output of
// the previous iteration becomes the input for the current iteration. The swap
// is not performed on the last iteration.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::Pointer input = reader->GetOutput();
for (unsigned int i = 0; i < ImageType::ImageDimension; ++i)
{
gaussianOperator.SetDirection(i);
gaussianOperator.CreateDirectional();
faceList = faceCalculator(input, output->GetRequestedRegion(),
gaussianOperator.GetRadius());
for ( fit=faceList.begin(); fit != faceList.end(); ++fit )
{
it = NeighborhoodIteratorType( gaussianOperator.GetRadius(),
input, *fit );
out = IteratorType( output, *fit );
for (it.GoToBegin(), out.GoToBegin(); ! it.IsAtEnd(); ++it, ++out)
{
out.Set( innerProduct(it, gaussianOperator) );
}
}
// Swap the input and output buffers
if (i != ImageType::ImageDimension - 1)
{
ImageType::Pointer tmp = input;
input = output;
output = tmp;
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output is rescaled and written as in the previous examples.
// Figure~\ref{fig:NeighborhoodExample4} shows the results of Gaussian blurring
// the image \code{Examples/Data/BrainT1Slice.png} using increasing
// kernel widths.
//
// \begin{figure}
// \centering
// \includegraphics[width=0.23\textwidth]{NeighborhoodIterators4a}
// \includegraphics[width=0.23\textwidth]{NeighborhoodIterators4b}
// \includegraphics[width=0.23\textwidth]{NeighborhoodIterators4c}
// \includegraphics[width=0.23\textwidth]{NeighborhoodIterators4d}
// \itkcaption[Gaussian blurring by convolution filtering]{Results of
// convolution filtering with a Gaussian kernel of increasing standard
// deviation $\sigma$ (from left to right, $\sigma = 0$, $\sigma = 1$, $\sigma
// = 2$, $\sigma = 5$). Increased blurring reduces contrast and changes the
// average intensity value of the image, which causes the image to appear
// brighter when rescaled.}
// \protect\label{fig:NeighborhoodExample4}
// \end{figure}
//
// Software Guide : EndLatex
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::ImageFileWriter< WriteImageType > WriterType;
typedef itk::RescaleIntensityImageFilter<
ImageType, WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
rescaler->SetInput(output);
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
writer->SetInput( rescaler->GetOutput() );
try
{
writer->Update();
}
catch ( itk::ExceptionObject &err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|