File: NeighborhoodIterators4.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (232 lines) | stat: -rw-r--r-- 8,167 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainT1Slice.png}
//    OUTPUTS: {NeighborhoodIterators4a.png}
//    ARGUMENTS:    0
//  Software Guide : EndCommandLineArgs
//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainT1Slice.png}
//    OUTPUTS: {NeighborhoodIterators4b.png}
//    ARGUMENTS:    1
//  Software Guide : EndCommandLineArgs
//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainT1Slice.png}
//    OUTPUTS: {NeighborhoodIterators4c.png}
//    ARGUMENTS:    2
//  Software Guide : EndCommandLineArgs
//  Software Guide : BeginCommandLineArgs
//    INPUTS:  {BrainT1Slice.png}
//    OUTPUTS: {NeighborhoodIterators4d.png}
//    ARGUMENTS:    5
//  Software Guide : EndCommandLineArgs

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhoodInnerProduct.h"

// Software Guide : BeginLatex
//
// We now introduce a variation on convolution filtering that is useful when a
// convolution kernel is separable.  In this example, we create a different
// neighborhood iterator for each axial direction of the image and then take
// separate inner products with a 1D discrete Gaussian kernel.
// The idea of using several neighborhood iterators at once has applications
// beyond convolution filtering and may improve efficiency when the size of
// the whole neighborhood relative to the portion of the neighborhood used
// in calculations becomes large.
//
// The only new class necessary for this example is the Gaussian operator.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkGaussianOperator.h"
// Software Guide : EndCodeSnippet

int main( int argc, char ** argv )
{
  if ( argc < 4 )
    {
    std::cerr << "Missing parameters. " << std::endl;
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0]
              << " inputImageFile outputImageFile sigma"
              << std::endl;
    return EXIT_FAILURE;
    }

  typedef float                             PixelType;
  typedef itk::Image< PixelType, 2 >        ImageType;
  typedef itk::ImageFileReader< ImageType > ReaderType;

  typedef itk::ConstNeighborhoodIterator< ImageType > NeighborhoodIteratorType;
  typedef itk::ImageRegionIterator< ImageType>        IteratorType;

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );
  try
    {
    reader->Update();
    }
  catch ( itk::ExceptionObject &err)
    {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
    }

  ImageType::Pointer output = ImageType::New();
  output->SetRegions(reader->GetOutput()->GetRequestedRegion());
  output->Allocate();

  itk::NeighborhoodInnerProduct<ImageType> innerProduct;

  typedef itk::NeighborhoodAlgorithm
    ::ImageBoundaryFacesCalculator< ImageType > FaceCalculatorType;

  FaceCalculatorType faceCalculator;
  FaceCalculatorType::FaceListType faceList;
  FaceCalculatorType::FaceListType::iterator fit;

  IteratorType out;
  NeighborhoodIteratorType it;


// Software Guide : BeginLatex
//
// The Gaussian operator, like the Sobel operator, is instantiated with a pixel
// type and a dimensionality.  Additionally, we set the variance of the
// Gaussian, which has been read from the command line as standard deviation.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  itk::GaussianOperator< PixelType, 2 > gaussianOperator;
  gaussianOperator.SetVariance( ::atof(argv[3]) * ::atof(argv[3]) );
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// The only further changes from the previous example are in the main loop.
// Once again we use the results from face calculator to construct a loop that
// processes boundary and non-boundary image regions separately.  Separable
// convolution, however, requires an additional, outer loop over all the image
// dimensions.  The direction of the Gaussian operator is reset at each
// iteration of the outer loop using the new dimension.  The iterators change
// direction to match because they are initialized with the radius of the
// Gaussian operator.
//
// Input and output buffers are swapped at each iteration so that the output of
// the previous iteration becomes the input for the current iteration. The swap
// is not performed on the last iteration.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ImageType::Pointer input = reader->GetOutput();
  for (unsigned int i = 0; i < ImageType::ImageDimension; ++i)
    {
    gaussianOperator.SetDirection(i);
    gaussianOperator.CreateDirectional();

    faceList = faceCalculator(input, output->GetRequestedRegion(),
                              gaussianOperator.GetRadius());

    for ( fit=faceList.begin(); fit != faceList.end(); ++fit )
      {
      it = NeighborhoodIteratorType( gaussianOperator.GetRadius(),
                                     input, *fit );

      out = IteratorType( output, *fit );

      for (it.GoToBegin(), out.GoToBegin(); ! it.IsAtEnd(); ++it, ++out)
        {
        out.Set( innerProduct(it, gaussianOperator) );
        }
      }

    // Swap the input and output buffers
    if (i != ImageType::ImageDimension - 1)
      {
      ImageType::Pointer tmp = input;
      input = output;
      output = tmp;
      }
    }
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// The output is rescaled and written as in the previous examples.
// Figure~\ref{fig:NeighborhoodExample4} shows the results of Gaussian blurring
// the image \code{Examples/Data/BrainT1Slice.png} using increasing
// kernel widths.
//
// \begin{figure}
// \centering
// \includegraphics[width=0.23\textwidth]{NeighborhoodIterators4a}
// \includegraphics[width=0.23\textwidth]{NeighborhoodIterators4b}
// \includegraphics[width=0.23\textwidth]{NeighborhoodIterators4c}
// \includegraphics[width=0.23\textwidth]{NeighborhoodIterators4d}
// \itkcaption[Gaussian blurring by convolution filtering]{Results of
// convolution filtering with a Gaussian kernel of increasing standard
// deviation $\sigma$ (from left to right, $\sigma = 0$, $\sigma = 1$, $\sigma
// = 2$, $\sigma = 5$).  Increased blurring reduces contrast and changes the
// average intensity value of the image, which causes the image to appear
// brighter when rescaled.}
// \protect\label{fig:NeighborhoodExample4}
// \end{figure}
//
// Software Guide : EndLatex

  typedef unsigned char                          WritePixelType;
  typedef itk::Image< WritePixelType, 2 >        WriteImageType;
  typedef itk::ImageFileWriter< WriteImageType > WriterType;

  typedef itk::RescaleIntensityImageFilter<
    ImageType, WriteImageType > RescaleFilterType;

  RescaleFilterType::Pointer rescaler = RescaleFilterType::New();

  rescaler->SetOutputMinimum(   0 );
  rescaler->SetOutputMaximum( 255 );
  rescaler->SetInput(output);

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[2] );
  writer->SetInput( rescaler->GetOutput() );
  try
    {
    writer->Update();
    }
  catch ( itk::ExceptionObject &err)
    {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}