1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkNeighborhoodIterator.h"
#include "itkFastMarchingImageFilter.h"
#include "itkRandomImageSource.h"
#include "itkAddImageFilter.h"
// Software Guide : BeginLatex
//
// Some image processing routines do not need to visit every pixel in an
// image. Flood-fill and connected-component algorithms, for example, only
// visit pixels that are locally connected to one another. Algorithms
// such as these can be efficiently written using the random access
// capabilities of the neighborhood iterator.
//
// The following example finds local minima. Given a seed point, we can search
// the neighborhood of that point and pick the smallest value $m$. While $m$
// is not at the center of our current neighborhood, we move in the direction
// of $m$ and repeat the analysis. Eventually we discover a local minimum and
// stop. This algorithm is made trivially simple in ND using an ITK
// neighborhood iterator.
//
// To illustrate the process, we create an image that descends everywhere to a
// single minimum: a positive distance transform to a point. The details of
// creating the distance transform are not relevant to the discussion of
// neighborhood iterators, but can be found in the source code of this
// example. Some noise has been added to the distance transform image for
// additional interest.
//
// Software Guide : EndLatex
int main( int argc, char ** argv )
{
if ( argc < 4 )
{
std::cerr << "Missing parameters. " << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0]
<< " outputImageFile startX startY"
<< std::endl;
return EXIT_FAILURE;
}
typedef float PixelType;
typedef itk::Image< PixelType, 2 > ImageType;
typedef itk::NeighborhoodIterator< ImageType > NeighborhoodIteratorType;
typedef itk::FastMarchingImageFilter<ImageType, ImageType> FastMarchingFilterType;
FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New();
typedef FastMarchingFilterType::NodeContainer NodeContainer;
typedef FastMarchingFilterType::NodeType NodeType;
NodeContainer::Pointer seeds = NodeContainer::New();
ImageType::IndexType seedPosition;
seedPosition[0] = 128;
seedPosition[1] = 128;
const double initialDistance = 1.0;
NodeType node;
const double seedValue = - initialDistance;
ImageType::SizeType size = {{256, 256}};
node.SetValue( seedValue );
node.SetIndex( seedPosition );
seeds->Initialize();
seeds->InsertElement( 0, node );
fastMarching->SetTrialPoints( seeds );
fastMarching->SetSpeedConstant( 1.0 );
itk::AddImageFilter<ImageType, ImageType, ImageType>::Pointer adder
= itk::AddImageFilter<ImageType, ImageType, ImageType>::New();
itk::RandomImageSource<ImageType>::Pointer noise
= itk::RandomImageSource<ImageType>::New();
noise->SetSize(size.m_Size);
noise->SetMin(-.7);
noise->SetMax(.8);
adder->SetInput1(noise->GetOutput());
adder->SetInput2(fastMarching->GetOutput());
try
{
fastMarching->SetOutputSize( size );
fastMarching->Update();
adder->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
ImageType::Pointer input = adder->GetOutput();
// Software Guide : BeginLatex
//
// The variable \code{input} is the pointer to the distance transform image.
// The local minimum algorithm is initialized with a seed point read from the
// command line.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::IndexType index;
index[0] = ::atoi(argv[2]);
index[1] = ::atoi(argv[3]);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we create the neighborhood iterator and position it at the seed point.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
NeighborhoodIteratorType::RadiusType radius;
radius.Fill(1);
NeighborhoodIteratorType it(radius, input, input->GetRequestedRegion());
it.SetLocation(index);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Searching for the local minimum involves finding the minimum in the current
// neighborhood, then shifting the neighborhood in the direction of that
// minimum. The \code{for} loop below records the \doxygen{Offset} of the
// minimum neighborhood pixel. The neighborhood iterator is then moved using
// that offset. When a local minimum is detected, \code{flag} will remain
// false and the \code{while} loop will exit. Note that this code is
// valid for an image of any dimensionality.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
bool flag = true;
while ( flag == true )
{
NeighborhoodIteratorType::OffsetType nextMove;
nextMove.Fill(0);
flag = false;
PixelType min = it.GetCenterPixel();
for (unsigned i = 0; i < it.Size(); i++)
{
if ( it.GetPixel(i) < min )
{
min = it.GetPixel(i);
nextMove = it.GetOffset(i);
flag = true;
}
}
it.SetCenterPixel( 255.0 );
it += nextMove;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Figure~\ref{fig:NeighborhoodExample6} shows the results of the algorithm
// for several seed points. The white line is the path of the iterator from
// the seed point to the minimum in the center of the image. The effect of the
// additive noise is visible as the small perturbations in the paths.
//
// \begin{figure} \centering
// \includegraphics[width=0.3\textwidth]{NeighborhoodIterators6a}
// \includegraphics[width=0.3\textwidth]{NeighborhoodIterators6b}
// \includegraphics[width=0.3\textwidth]{NeighborhoodIterators6c}
// \itkcaption[Finding local minima]{Paths traversed by the neighborhood
// iterator from different seed points to the local minimum.
// The true minimum is at the center
// of the image. The path of the iterator is shown in white. The effect of
// noise in the image is seen as small perturbations in each path. }
// \protect\label{fig:NeighborhoodExample6} \end{figure}
//
// Software Guide : EndLatex
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::ImageFileWriter< WriteImageType > WriterType;
typedef itk::RescaleIntensityImageFilter< ImageType,
WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
rescaler->SetInput( input );
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[1] );
writer->SetInput( rescaler->GetOutput() );
try
{
writer->Update();
}
catch ( itk::ExceptionObject &err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|