1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkNeighborhoodAlgorithm.h"
#include <math.h>
// Software Guide : BeginLatex
//
// This example uses \doxygen{ShapedNeighborhoodIterator} to implement a binary
// erosion algorithm. If we think of an image $I$ as a set of pixel indices,
// then erosion of $I$ by a smaller set $E$, called the \emph{structuring
// element}, is the set of all indices at locations $x$ in $I$ such that when
// $E$ is positioned at $x$, every element in $E$ is also contained in $I$.
//
// This type of algorithm is easy to implement with shaped neighborhood
// iterators because we can use the iterator itself as the structuring element
// $E$ and move it sequentially through all positions $x$. The result at $x$
// is obtained by checking values in a simple iteration loop through the
// neighborhood stencil.
//
// We need two iterators, a shaped iterator for the input image and a regular
// image iterator for writing results to the output image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkConstShapedNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"
// Software Guide : EndCodeSnippet
int main( int argc, char ** argv )
{
if ( argc < 4 )
{
std::cerr << "Missing parameters. " << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0]
<< " inputImageFile outputImageFile element_radius"
<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Since we are working with binary images in this example, an \code{unsigned
// char} pixel type will do. The image and iterator types are defined using
// the pixel type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char PixelType;
typedef itk::Image< PixelType, 2 > ImageType;
typedef itk::ConstShapedNeighborhoodIterator<
ImageType
> ShapedNeighborhoodIteratorType;
typedef itk::ImageRegionIterator< ImageType> IteratorType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch ( itk::ExceptionObject &err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
ImageType::Pointer output = ImageType::New();
output->SetRegions(reader->GetOutput()->GetRequestedRegion());
output->Allocate();
// Software Guide : BeginLatex
//
// Refer to the examples in Section~\ref{sec:itkNeighborhoodIterator} or the
// source code of this example for a description of how to read the input image
// and allocate a matching output image.
//
// The size of the structuring element is read from the command line and used
// to define a radius for the shaped neighborhood iterator. Using the method
// developed in section~\ref{sec:itkNeighborhoodIterator} to minimize bounds
// checking, the iterator itself is not initialized until entering the
// main processing loop.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
unsigned int element_radius = ::atoi( argv[3] );
ShapedNeighborhoodIteratorType::RadiusType radius;
radius.Fill(element_radius);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The face calculator object introduced in
// Section~\ref{sec:NeighborhoodExample3} is created and used as before.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<
ImageType > FaceCalculatorType;
FaceCalculatorType faceCalculator;
FaceCalculatorType::FaceListType faceList;
FaceCalculatorType::FaceListType::iterator fit;
faceList = faceCalculator( reader->GetOutput(),
output->GetRequestedRegion(),
radius );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now we initialize some variables and constants.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
IteratorType out;
const PixelType background_value = 0;
const PixelType foreground_value = 255;
const float rad = static_cast<float>(element_radius);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The outer loop of the algorithm is structured as in previous neighborhood
// iterator examples. Each region in the face list is processed in turn. As each new
// region is processed, the input and output iterators are initialized on that
// region.
//
// The shaped iterator that ranges over the input is our structuring element
// and its active stencil must be created accordingly. For this example, the
// structuring element is shaped like a circle of radius
// \code{element\_radius}. Each of the appropriate neighborhood offsets is
// activated in the double \code{for} loop.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
for ( fit=faceList.begin(); fit != faceList.end(); ++fit)
{
ShapedNeighborhoodIteratorType it( radius, reader->GetOutput(), *fit );
out = IteratorType( output, *fit );
// Creates a circular structuring element by activating all the pixels less
// than radius distance from the center of the neighborhood.
for (float y = -rad; y <= rad; y++)
{
for (float x = -rad; x <= rad; x++)
{
ShapedNeighborhoodIteratorType::OffsetType off;
float dis = std::sqrt( x*x + y*y );
if (dis <= rad)
{
off[0] = static_cast<int>(x);
off[1] = static_cast<int>(y);
it.ActivateOffset(off);
}
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The inner loop, which implements the erosion algorithm, is fairly simple.
// The \code{for} loop steps the input and output iterators through their
// respective images. At each step, the active stencil of the shaped iterator
// is traversed to determine whether all pixels underneath the stencil contain
// the foreground value, i.e. are contained within the set $I$. Note the use
// of the stencil iterator, \code{ci}, in performing this check.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Implements erosion
for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)
{
ShapedNeighborhoodIteratorType::ConstIterator ci;
bool flag = true;
for (ci = it.Begin(); ci != it.End(); ci++)
{
if (ci.Get() == background_value)
{
flag = false;
break;
}
}
if (flag == true)
{
out.Set(foreground_value);
}
else
{
out.Set(background_value);
}
}
}
// Software Guide : EndCodeSnippet
typedef itk::ImageFileWriter< ImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
writer->SetInput( output );
try
{
writer->Update();
}
catch ( itk::ExceptionObject &err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|