File: DeformableRegistration6.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (521 lines) | stat: -rw-r--r-- 17,220 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{BSplineTransform}
// class in a manually controlled multi-resolution scheme. Here we define two
// transforms at two different resolution levels. A first registration is
// performed with the spline grid of low resolution, and the results are then
// used for initializing a higher resolution grid. Since this example is quite
// similar to the previous example on the use of the
// \code{BSplineTransform} we omit here most of the details already
// discussed and will focus on the aspects related to the multi-resolution
// approach.
//
// \index{itk::BSplineTransform}
// \index{itk::BSplineTransform!DeformableRegistration}
// \index{itk::LBFGSOptimizer}
//
//
// Software Guide : EndLatex

#include "itkImageRegistrationMethod.h"
#include "itkMeanSquaresImageToImageMetric.h"

//  Software Guide : BeginLatex
//
//  We include the header files for the transform and the optimizer.
//
//  \index{itk::BSplineTransform!header}
//  \index{itk::LBFGSOptimizer!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkBSplineTransform.h"
#include "itkLBFGSOptimizer.h"
// Software Guide : EndCodeSnippet


#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkSquaredDifferenceImageFilter.h"

#include "itkBSplineResampleImageFunction.h"
#include "itkIdentityTransform.h"
#include "itkBSplineDecompositionImageFilter.h"

// NOTE: the LBFGSOptimizer does not invoke events


int main( int argc, char *argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile  movingImageFile outputImagefile  ";
    std::cerr << " [differenceOutputfile] [differenceBeforeRegistration] ";
    std::cerr << " [deformationField] ";
    return EXIT_FAILURE;
    }

  const    unsigned int    ImageDimension = 2;
  typedef  float           PixelType;

  typedef itk::Image< PixelType, ImageDimension >  FixedImageType;
  typedef itk::Image< PixelType, ImageDimension >  MovingImageType;


  //  Software Guide : BeginLatex
  //
  //  We instantiate now the type of the \code{BSplineTransform} using
  //  as template parameters the type for coordinates representation, the
  //  dimension of the space, and the order of the BSpline.
  //
  //  \index{BSplineTransform!New}
  //  \index{BSplineTransform!Instantiation}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  const unsigned int SpaceDimension = ImageDimension;
  const unsigned int SplineOrder = 3;
  typedef double CoordinateRepType;

  typedef itk::BSplineTransform<
                            CoordinateRepType,
                            SpaceDimension,
                            SplineOrder >     TransformType;
  // Software Guide : EndCodeSnippet


  typedef itk::LBFGSOptimizer       OptimizerType;


  typedef itk::MeanSquaresImageToImageMetric<
                                    FixedImageType,
                                    MovingImageType >    MetricType;

  typedef itk:: LinearInterpolateImageFunction<
                                    MovingImageType,
                                    double          >    InterpolatorType;

  typedef itk::ImageRegistrationMethod<
                                    FixedImageType,
                                    MovingImageType >    RegistrationType;

  MetricType::Pointer         metric        = MetricType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  InterpolatorType::Pointer   interpolator  = InterpolatorType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();


  registration->SetMetric(        metric        );
  registration->SetOptimizer(     optimizer     );
  registration->SetInterpolator(  interpolator  );


  //  Software Guide : BeginLatex
  //
  //  We construct two transform objects, each one will be configured for a resolution level.
  //  Notice than in this multi-resolution scheme we are not modifying the
  //  resolution of the image, but rather the flexibility of the deformable
  //  transform itself.
  //
  //  \index{itk::RegistrationMethod!SetTransform()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  TransformType::Pointer  transformLow = TransformType::New();
  registration->SetTransform( transformLow );
  // Software Guide : EndCodeSnippet

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer  fixedImageReader  = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName(  argv[1] );
  movingImageReader->SetFileName( argv[2] );

  FixedImageType::ConstPointer fixedImage = fixedImageReader->GetOutput();

  registration->SetFixedImage(  fixedImage   );
  registration->SetMovingImage(   movingImageReader->GetOutput()   );

  fixedImageReader->Update();

  FixedImageType::RegionType fixedRegion = fixedImage->GetBufferedRegion();

  registration->SetFixedImageRegion( fixedRegion );

  unsigned int numberOfGridNodes = 8;

  TransformType::PhysicalDimensionsType   fixedPhysicalDimensions;
  TransformType::MeshSizeType             meshSize;
  TransformType::OriginType               fixedOrigin;

  for( unsigned int i=0; i< SpaceDimension; i++ )
    {
    fixedOrigin[i] = fixedImage->GetOrigin()[i];
    fixedPhysicalDimensions[i] = fixedImage->GetSpacing()[i] *
      static_cast<double>(
      fixedImage->GetLargestPossibleRegion().GetSize()[i] - 1 );
    }
  meshSize.Fill( numberOfGridNodes - SplineOrder );

  transformLow->SetTransformDomainOrigin( fixedOrigin );
  transformLow->SetTransformDomainPhysicalDimensions(
    fixedPhysicalDimensions );
  transformLow->SetTransformDomainMeshSize( meshSize );
  transformLow->SetTransformDomainDirection( fixedImage->GetDirection() );


  typedef TransformType::ParametersType     ParametersType;

  const unsigned int numberOfParameters =
               transformLow->GetNumberOfParameters();

  ParametersType parametersLow( numberOfParameters );

  parametersLow.Fill( 0.0 );

  transformLow->SetParameters( parametersLow );
  //  Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  We now pass the parameters of the current transform as the initial
  //  parameters to be used when the registration process starts.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  registration->SetInitialTransformParameters( transformLow->GetParameters() );


  optimizer->SetGradientConvergenceTolerance( 0.05 );
  optimizer->SetLineSearchAccuracy( 0.9 );
  optimizer->SetDefaultStepLength( 1.5 );
  optimizer->TraceOn();
  optimizer->SetMaximumNumberOfFunctionEvaluations( 1000 );
  std::cout << "Starting Registration with low resolution transform"
            << std::endl;

  try
    {
    registration->Update();
    std::cout << "Optimizer stop condition = "
              << registration->GetOptimizer()->GetStopConditionDescription()
              << std::endl;
    }
  catch( itk::ExceptionObject & err )
    {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
    }
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Once the registration has finished with the low resolution grid, we
  //  proceed to instantiate a higher resolution
  //  \code{BSplineTransform}.
  //
  //  Software Guide : EndLatex

  TransformType::Pointer  transformHigh = TransformType::New();

  numberOfGridNodes = 12;

  for( unsigned int i=0; i< SpaceDimension; i++ )
    {
    fixedOrigin[i] = fixedImage->GetOrigin()[i];
    fixedPhysicalDimensions[i] = fixedImage->GetSpacing()[i] *
      static_cast<double>(
      fixedImage->GetLargestPossibleRegion().GetSize()[i] - 1 );
    }
  meshSize.Fill( numberOfGridNodes - SplineOrder );

  transformHigh->SetTransformDomainOrigin( fixedOrigin );
  transformHigh->SetTransformDomainPhysicalDimensions(
    fixedPhysicalDimensions );
  transformHigh->SetTransformDomainMeshSize( meshSize );
  transformHigh->SetTransformDomainDirection( fixedImage->GetDirection() );

  ParametersType parametersHigh( transformHigh->GetNumberOfParameters() );
  parametersHigh.Fill( 0.0 );

  //  Software Guide : BeginLatex
  //
  //  Now we need to initialize the BSpline coefficients of the higher resolution
  //  transform. This is done by first computing the actual deformation field
  //  at the higher resolution from the lower resolution BSpline coefficients.
  //  Then a BSpline decomposition is done to obtain the BSpline coefficient of
  //  the higher resolution transform.
  //
  //  Software Guide : EndLatex

  unsigned int counter = 0;

  for ( unsigned int k = 0; k < SpaceDimension; k++ )
    {
    typedef TransformType::ImageType ParametersImageType;
    typedef itk::ResampleImageFilter<ParametersImageType,ParametersImageType> ResamplerType;
    ResamplerType::Pointer upsampler = ResamplerType::New();

    typedef itk::BSplineResampleImageFunction<ParametersImageType,double> FunctionType;
    FunctionType::Pointer function = FunctionType::New();

    typedef itk::IdentityTransform<double,SpaceDimension> IdentityTransformType;
    IdentityTransformType::Pointer identity = IdentityTransformType::New();

    upsampler->SetInput( transformLow->GetCoefficientImages()[k] );
    upsampler->SetInterpolator( function );
    upsampler->SetTransform( identity );
    upsampler->SetSize( transformHigh->GetCoefficientImages()[k]->
      GetLargestPossibleRegion().GetSize() );
    upsampler->SetOutputSpacing(
      transformHigh->GetCoefficientImages()[k]->GetSpacing() );
    upsampler->SetOutputOrigin(
      transformHigh->GetCoefficientImages()[k]->GetOrigin() );
    upsampler->SetOutputDirection( fixedImage->GetDirection() );

    typedef itk::BSplineDecompositionImageFilter<ParametersImageType,ParametersImageType>
      DecompositionType;
    DecompositionType::Pointer decomposition = DecompositionType::New();

    decomposition->SetSplineOrder( SplineOrder );
    decomposition->SetInput( upsampler->GetOutput() );
    decomposition->Update();

    ParametersImageType::Pointer newCoefficients = decomposition->GetOutput();

    // copy the coefficients into the parameter array
    typedef itk::ImageRegionIterator<ParametersImageType> Iterator;
    Iterator it( newCoefficients,
      transformHigh->GetCoefficientImages()[k]->GetLargestPossibleRegion() );
    while ( !it.IsAtEnd() )
      {
      parametersHigh[ counter++ ] = it.Get();
      ++it;
      }

    }

  transformHigh->SetParameters( parametersHigh );

  //  Software Guide : BeginLatex
  //
  //  We now pass the parameters of the high resolution transform as the initial
  //  parameters to be used in a second stage of the registration process.
  //
  //  Software Guide : EndLatex

  std::cout << "Starting Registration with high resolution transform" << std::endl;

  // Software Guide : BeginCodeSnippet
  registration->SetInitialTransformParameters(transformHigh->GetParameters());
  registration->SetTransform( transformHigh );
  //  Software Guide : BeginLatex
  //
  //  Typically, we will also want to tighten the optimizer parameters
  //  when we move from lower to higher resolution grid.
  //
  //  Software Guide : EndLatex
  optimizer->SetGradientConvergenceTolerance( 0.01 );
  optimizer->SetDefaultStepLength( 0.25 );
  try
    {
    registration->Update();
    }
  catch( itk::ExceptionObject & err )
    {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
    }
  // Software Guide : EndCodeSnippet

  // Finally we use the last transform parameters in order to resample the image.
  //
  transformHigh->SetParameters( registration->GetLastTransformParameters() );

  typedef itk::ResampleImageFilter<
                            MovingImageType,
                            FixedImageType >    ResampleFilterType;

  ResampleFilterType::Pointer resample = ResampleFilterType::New();

  resample->SetTransform( transformHigh );
  resample->SetInput( movingImageReader->GetOutput() );

  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 100 );

  typedef  unsigned char  OutputPixelType;

  typedef itk::Image< OutputPixelType, ImageDimension > OutputImageType;

  typedef itk::CastImageFilter<
                        FixedImageType,
                        OutputImageType > CastFilterType;

  typedef itk::ImageFileWriter< OutputImageType >  WriterType;


  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();


  writer->SetFileName( argv[3] );


  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput()   );


  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & err )
    {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
    }

  typedef itk::SquaredDifferenceImageFilter<
                                  FixedImageType,
                                  FixedImageType,
                                  OutputImageType > DifferenceFilterType;

  DifferenceFilterType::Pointer difference = DifferenceFilterType::New();

  WriterType::Pointer writer2 = WriterType::New();
  writer2->SetInput( difference->GetOutput() );


  // Compute the difference image between the
  // fixed and resampled moving image.
  if( argc >= 5 )
    {
    difference->SetInput1( fixedImageReader->GetOutput() );
    difference->SetInput2( resample->GetOutput() );
    writer2->SetFileName( argv[4] );
    try
      {
      writer2->Update();
      }
    catch( itk::ExceptionObject & err )
      {
      std::cerr << "ExceptionObject caught !" << std::endl;
      std::cerr << err << std::endl;
      return EXIT_FAILURE;
      }
    }


  // Compute the difference image between the
  // fixed and moving image before registration.
  if( argc >= 6 )
    {
    writer2->SetFileName( argv[5] );
    difference->SetInput1( fixedImageReader->GetOutput() );
    difference->SetInput2( movingImageReader->GetOutput() );
    try
      {
      writer2->Update();
      }
    catch( itk::ExceptionObject & err )
      {
      std::cerr << "ExceptionObject caught !" << std::endl;
      std::cerr << err << std::endl;
      return EXIT_FAILURE;
      }
    }

  // Generate the explicit deformation field resulting from
  // the registration.

  typedef itk::Vector< float, ImageDimension >      VectorType;
  typedef itk::Image< VectorType, ImageDimension >  DisplacementFieldType;

  DisplacementFieldType::Pointer field = DisplacementFieldType::New();
  field->SetRegions( fixedRegion );
  field->SetOrigin( fixedImage->GetOrigin() );
  field->SetSpacing( fixedImage->GetSpacing() );
  field->SetDirection( fixedImage->GetDirection() );
  field->Allocate();

  typedef itk::ImageRegionIterator< DisplacementFieldType > FieldIterator;
  FieldIterator fi( field, fixedRegion );

  fi.GoToBegin();

  TransformType::InputPointType  fixedPoint;
  TransformType::OutputPointType movingPoint;
  DisplacementFieldType::IndexType index;

  VectorType displacement;

  while( ! fi.IsAtEnd() )
    {
    index = fi.GetIndex();
    field->TransformIndexToPhysicalPoint( index, fixedPoint );
    movingPoint = transformHigh->TransformPoint( fixedPoint );
    displacement = movingPoint - fixedPoint;
    fi.Set( displacement );
    ++fi;
    }

  typedef itk::ImageFileWriter< DisplacementFieldType >  FieldWriterType;
  FieldWriterType::Pointer fieldWriter = FieldWriterType::New();

  fieldWriter->SetInput( field );

  if( argc >= 7 )
    {
    fieldWriter->SetFileName( argv[6] );
    try
      {
      fieldWriter->Update();
      }
    catch( itk::ExceptionObject & excp )
      {
      std::cerr << "Exception thrown " << std::endl;
      std::cerr << excp << std::endl;
      return EXIT_FAILURE;
      }
    }

  return EXIT_SUCCESS;
}