1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use SpatialObjects as masks for selecting the
// pixels that should contribute to the computation of Image Metrics. This
// example is almost identical to ImageRegistration6 with the exception that
// the SpatialObject masks are created and passed to the image metric.
//
//
// Software Guide : EndLatex
#include "itkImageRegistrationMethod.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkCenteredRigid2DTransform.h"
#include "itkCenteredTransformInitializer.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkSquaredDifferenceImageFilter.h"
// Software Guide : BeginLatex
//
// The most important header in this example is the one corresponding to the
// \doxygen{ImageMaskSpatialObject} class.
//
// \index{itk::ImageMaskSpatialObject!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageMaskSpatialObject.h"
// Software Guide : EndCodeSnippet
//
// The following section of code implements a command observer
// that will monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( ! itk::IterationEvent().CheckEvent( &event ) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int main( int argc, char *argv[] )
{
if( argc < 5 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile fixedImageMaskFile";
std::cerr << " outputImagefile [differenceOutputfile] ";
std::cerr << " [differenceBeforeRegistration] "<< std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef float PixelType;
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
typedef itk::CenteredRigid2DTransform< double > TransformType;
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
MetricType::Pointer metric = MetricType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetInterpolator( interpolator );
TransformType::Pointer transform = TransformType::New();
registration->SetTransform( transform );
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
typedef itk::CenteredTransformInitializer<
TransformType,
FixedImageType,
MovingImageType > TransformInitializerType;
TransformInitializerType::Pointer initializer = TransformInitializerType::New();
initializer->SetTransform( transform );
initializer->SetFixedImage( fixedImageReader->GetOutput() );
initializer->SetMovingImage( movingImageReader->GetOutput() );
initializer->MomentsOn();
initializer->InitializeTransform();
transform->SetAngle( 0.0 );
registration->SetInitialTransformParameters( transform->GetParameters() );
typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
const double translationScale = 1.0 / 1000.0;
optimizerScales[0] = 1.0;
optimizerScales[1] = translationScale;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;
optimizer->SetScales( optimizerScales );
optimizer->SetMaximumStepLength( 0.1 );
optimizer->SetMinimumStepLength( 0.001 );
optimizer->SetNumberOfIterations( 200 );
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
// Software Guide : BeginLatex
//
// Here we instantiate the type of the \doxygen{ImageMaskSpatialObject}
// using the same dimension of the images to be registered.
//
// \index{itk::ImageMaskSpatialObject!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageMaskSpatialObject< Dimension > MaskType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we use the type for creating the spatial object mask that will
// restrict the registration to a reduced region of the image.
//
// \index{itk::ImageMaskSpatialObject!New}
// \index{itk::ImageMaskSpatialObject!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MaskType::Pointer spatialObjectMask = MaskType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The mask in this case is read from a binary file using the
// \code{ImageFileReader} instantiated for an \code{unsigned char} pixel
// type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Image< unsigned char, Dimension > ImageMaskType;
typedef itk::ImageFileReader< ImageMaskType > MaskReaderType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The reader is constructed and a filename is passed to it.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MaskReaderType::Pointer maskReader = MaskReaderType::New();
maskReader->SetFileName( argv[3] );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As usual, the reader is triggered by invoking its \code{Update()} method.
// Since this may eventually throw an exception, the call must be placed in
// a \code{try/catch} block. Note that a full fledged application will place
// this \code{try/catch} block at a much higher level, probably under the
// control of the GUI.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
maskReader->Update();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of the mask reader is connected as input to the
// \code{ImageMaskSpatialObject}.
//
// \index{itk::ImageMaskSpatialObject!SetImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
spatialObjectMask->SetImage( maskReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the spatial object mask is passed to the image metric.
//
// \index{itk::ImageToImageMetric!SetFixedImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetFixedImageMask( spatialObjectMask );
// Software Guide : EndCodeSnippet
try
{
registration->Update();
std::cout << "Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();
const double finalAngle = finalParameters[0];
const double finalRotationCenterX = finalParameters[1];
const double finalRotationCenterY = finalParameters[2];
const double finalTranslationX = finalParameters[3];
const double finalTranslationY = finalParameters[4];
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
const double bestValue = optimizer->GetValue();
// Print out results
//
const double finalAngleInDegrees = finalAngle * 45.0 / std::atan(1.0);
std::cout << "Result = " << std::endl;
std::cout << " Angle (radians) " << finalAngle << std::endl;
std::cout << " Angle (degrees) " << finalAngleInDegrees << std::endl;
std::cout << " Center X = " << finalRotationCenterX << std::endl;
std::cout << " Center Y = " << finalRotationCenterY << std::endl;
std::cout << " Translation X = " << finalTranslationX << std::endl;
std::cout << " Translation Y = " << finalTranslationY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images provided in
// \code{Examples/Data}, for example:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceR10X13Y17.png}
// \end{itemize}
//
// The second image is the result of intentionally rotating the first
// image by $10$ degrees and shifting it $13mm$ in $X$ and $17mm$ in
// $Y$. Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration5}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
transform->SetParameters( finalParameters );
TransformType::MatrixType matrix = transform->GetMatrix();
TransformType::OffsetType offset = transform->GetOffset();
std::cout << "Matrix = " << std::endl << matrix << std::endl;
std::cout << "Offset = " << std::endl << offset << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now we resample the moving image using the transform resulting from the
// registration process.
//
// Software Guide : EndLatex
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
FixedImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[4] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
typedef itk::SquaredDifferenceImageFilter<
FixedImageType,
FixedImageType,
OutputImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( difference->GetOutput() );
// Compute the difference image between the
// fixed and resampled moving image.
if( argc >= 6 )
{
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resample->GetOutput() );
writer2->SetFileName( argv[5] );
writer2->Update();
}
// Compute the difference image between the
// fixed and moving image before registration.
if( argc >= 7 )
{
writer2->SetFileName( argv[6] );
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( movingImageReader->GetOutput() );
writer2->Update();
}
return EXIT_SUCCESS;
}
|