File: ImageRegistration13.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (356 lines) | stat: -rw-r--r-- 13,022 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Software Guide : BeginLatex
//
//  This example illustrates how to do registration with a 2D Rigid Transform
//  and with MutualInformation metric.
//
// Software Guide : EndLatex


#include "itkImageRegistrationMethod.h"

#include "itkCenteredRigid2DTransform.h"
#include "itkCenteredTransformInitializer.h"

// Software Guide : BeginCodeSnippet
#include "itkMattesMutualInformationImageToImageMetric.h"
// Software Guide : EndCodeSnippet

#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"


#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"


//  The following section of code implements a Command observer
//  used to monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
  typedef  CommandIterationUpdate   Self;
  typedef  itk::Command             Superclass;
  typedef itk::SmartPointer<Self>   Pointer;
  itkNewMacro( Self );

protected:
  CommandIterationUpdate() {};

public:
  typedef itk::RegularStepGradientDescentOptimizer  OptimizerType;
  typedef   const OptimizerType *                   OptimizerPointer;

  void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
    {
    Execute( (const itk::Object *)caller, event);
    }

  void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
    {
    OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
    if( ! itk::IterationEvent().CheckEvent( &event ) )
      {
      return;
      }
    std::cout << optimizer->GetCurrentIteration() << "   ";
    std::cout << optimizer->GetValue() << "   ";
    std::cout << optimizer->GetCurrentPosition() << std::endl;
    }
};


int main( int argc, char *argv[] )
{
  if( argc < 3 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile  movingImageFile ";
    std::cerr << "outputImagefile ";
    std::cerr << "[useExplicitPDFderivatives ] ";
    std::cerr << "[useCachingBSplineWeights ] " << std::endl;
    return EXIT_FAILURE;
    }

  const    unsigned int    Dimension = 2;
  typedef  unsigned char   PixelType;

  typedef itk::Image< PixelType, Dimension >  FixedImageType;
  typedef itk::Image< PixelType, Dimension >  MovingImageType;

  // Software Guide : BeginLatex
  // The CenteredRigid2DTransform applies a rigid transform in 2D space.
  // Software Guide : EndLatex
  // Software Guide : BeginCodeSnippet
  typedef itk::CenteredRigid2DTransform< double >  TransformType;
  typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
  // Software Guide : EndCodeSnippet

  typedef itk::LinearInterpolateImageFunction<
                                    MovingImageType,
                                    double             > InterpolatorType;
  typedef itk::ImageRegistrationMethod<
                                    FixedImageType,
                                    MovingImageType    > RegistrationType;


  // Software Guide : BeginCodeSnippet
  typedef itk::MattesMutualInformationImageToImageMetric<
                                          FixedImageType,
                                          MovingImageType >    MetricType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginCodeSnippet
  TransformType::Pointer      transform     = TransformType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  // Software Guide : EndCodeSnippet
  InterpolatorType::Pointer   interpolator  = InterpolatorType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();

  registration->SetOptimizer(     optimizer     );
  registration->SetTransform(     transform     );
  registration->SetInterpolator(  interpolator  );


  MetricType::Pointer metric = MetricType::New();
  registration->SetMetric( metric  );


  metric->SetNumberOfHistogramBins( 20 );
  metric->SetNumberOfSpatialSamples( 10000 );

  // For consistent results when regression testing.
  metric->ReinitializeSeed( 121212 );


  if( argc > 4 )
    {
    // Define whether to calculate the metric derivative by explicitly
    // computing the derivatives of the joint PDF with respect to the Transform
    // parameters, or doing it by progressively accumulating contributions from
    // each bin in the joint PDF.
    metric->SetUseExplicitPDFDerivatives( atoi( argv[4] ) );
    }

  if( argc > 5 )
    {
    // Define whether to cache the BSpline weights and indexes corresponding to
    // each one of the samples used to compute the metric. Enabling caching will
    // make the algorithm run faster but it will have a cost on the amount of memory
    // that needs to be allocated. This option is only relevant when using the
    // BSplineTransform.
    metric->SetUseCachingOfBSplineWeights( atoi( argv[5] ) );
    }


  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer  fixedImageReader  = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName(  argv[1] );
  movingImageReader->SetFileName( argv[2] );

  registration->SetFixedImage(    fixedImageReader->GetOutput()    );
  registration->SetMovingImage(   movingImageReader->GetOutput()   );

  fixedImageReader->Update();

  registration->SetFixedImageRegion(
       fixedImageReader->GetOutput()->GetBufferedRegion() );

  // Software Guide : BeginLatex
  // The \doxygen{CenteredRigid2DTransform} is initialized by 5 parameters,
  // indicating the angle of rotation, the center coordinates and the
  // translation to be applied after rotation. The initialization is done
  // by the \doxygen{CenteredTransformInitializer}.
  // The transform can operate in two modes, one assumes that the
  // anatomical objects to be registered are centered in their respective
  // images. Hence the best initial guess for the registration is the one
  // that superimposes those two centers.
  // This second approach assumes that the moments of the anatomical
  // objects are similar for both images and hence the best initial guess
  // for registration is to superimpose both mass centers. The center of
  // mass is computed from the moments obtained from the gray level values.
  // Here we adopt the first approach. The \code{GeometryOn()} method
  // toggles between the approaches.
  // Software Guide : EndLatex
  // Software Guide : BeginCodeSnippet
  typedef itk::CenteredTransformInitializer<
            TransformType, FixedImageType,
            MovingImageType >  TransformInitializerType;
  TransformInitializerType::Pointer initializer
                                            = TransformInitializerType::New();
  initializer->SetTransform(   transform );

  initializer->SetFixedImage(  fixedImageReader->GetOutput() );
  initializer->SetMovingImage( movingImageReader->GetOutput() );
  initializer->GeometryOn();
  initializer->InitializeTransform();
  // Software Guide : EndCodeSnippet

  transform->SetAngle( 0.0 );


  registration->SetInitialTransformParameters( transform->GetParameters() );

  // Software Guide : BeginLatex
  // The optimizer scales the metrics (the gradient in this case) by the
  // scales during each iteration. Hence a large value of the center scale
  // will prevent movement along the center during optimization. Here we
  // assume that the fixed and moving images are likely to be related by
  // a translation.
  // Software Guide : EndLatex
  // Software Guide : BeginCodeSnippet
  typedef OptimizerType::ScalesType       OptimizerScalesType;
  OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );

  const double translationScale = 1.0 / 128.0;
  const double centerScale      = 1000.0; // prevents it from moving
                                          // during the optimization
  optimizerScales[0] = 1.0;
  optimizerScales[1] = centerScale;
  optimizerScales[2] = centerScale;
  optimizerScales[3] = translationScale;
  optimizerScales[4] = translationScale;

  optimizer->SetScales( optimizerScales );

  optimizer->SetMaximumStepLength( 0.5   );
  optimizer->SetMinimumStepLength( 0.0001 );
  optimizer->SetNumberOfIterations( 400 );
  // Software Guide : EndCodeSnippet

  // Create the Command observer and register it with the optimizer.
  //
  CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
  optimizer->AddObserver( itk::IterationEvent(), observer );


  try
    {
    registration->Update();
    std::cout << "Optimizer stop condition = "
              << registration->GetOptimizer()->GetStopConditionDescription()
              << std::endl;
    }
  catch( itk::ExceptionObject & err )
    {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return EXIT_FAILURE;
    }

  typedef RegistrationType::ParametersType ParametersType;

  ParametersType finalParameters = registration->GetLastTransformParameters();

  const double finalAngle           = finalParameters[0];
  const double finalRotationCenterX = finalParameters[1];
  const double finalRotationCenterY = finalParameters[2];
  const double finalTranslationX    = finalParameters[3];
  const double finalTranslationY    = finalParameters[4];

  unsigned int numberOfIterations = optimizer->GetCurrentIteration();

  double bestValue = optimizer->GetValue();

  // Print out results
  //

  const double finalAngleInDegrees = finalAngle * 180 / itk::Math::pi;

  std::cout << "Result = " << std::endl;
  std::cout << " Angle (radians) " << finalAngle  << std::endl;
  std::cout << " Angle (degrees) " << finalAngleInDegrees  << std::endl;
  std::cout << " Center X      = " << finalRotationCenterX  << std::endl;
  std::cout << " Center Y      = " << finalRotationCenterY  << std::endl;
  std::cout << " Translation X = " << finalTranslationX  << std::endl;
  std::cout << " Translation Y = " << finalTranslationY  << std::endl;
  std::cout << " Iterations    = " << numberOfIterations << std::endl;
  std::cout << " Metric value  = " << bestValue          << std::endl;


  typedef itk::ResampleImageFilter<
                            MovingImageType,
                            FixedImageType >    ResampleFilterType;

  TransformType::Pointer finalTransform = TransformType::New();

  finalTransform->SetParameters( finalParameters );
  finalTransform->SetFixedParameters( transform->GetFixedParameters() );

  ResampleFilterType::Pointer resample = ResampleFilterType::New();

  resample->SetTransform( finalTransform );
  resample->SetInput( movingImageReader->GetOutput() );

  FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 100 );


  typedef itk::Image< PixelType, Dimension > OutputImageType;

  typedef itk::ImageFileWriter< OutputImageType >  WriterType;

  WriterType::Pointer      writer =  WriterType::New();

  writer->SetFileName( argv[3] );

  writer->SetInput( resample->GetOutput() );
  writer->Update();

  return EXIT_SUCCESS;
}

//  Software Guide : BeginLatex
//
//  Let's execute this example over some of the images provided in
//  \code{Examples/Data}, for example:
//
//  \begin{itemize}
//  \item \code{BrainProtonDensitySlice.png}
//  \item \code{BrainProtonDensitySliceBorder20.png}
//  \end{itemize}
//
//  The second image is the result of intentionally shifting the first
//  image by $20mm$ in $X$ and $20mm$ in
//  $Y$. Both images have unit-spacing and are shown in Figure
//  \ref{fig:FixedMovingImageRegistration1}. The example
//  yielded the following results.
//
//  \begin{verbatim}
//  Translation X = 20
//  Translation Y = 20
//  \end{verbatim}
//  These values match the true misalignment introduced in the moving image.
//  Software Guide : EndLatex