1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to do registration with a 2D Rigid Transform
// and with MutualInformation metric.
//
// Software Guide : EndLatex
#include "itkImageRegistrationMethod.h"
#include "itkCenteredRigid2DTransform.h"
#include "itkCenteredTransformInitializer.h"
// Software Guide : BeginCodeSnippet
#include "itkMattesMutualInformationImageToImageMetric.h"
// Software Guide : EndCodeSnippet
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( ! itk::IterationEvent().CheckEvent( &event ) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int main( int argc, char *argv[] )
{
if( argc < 3 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << "outputImagefile ";
std::cerr << "[useExplicitPDFderivatives ] ";
std::cerr << "[useCachingBSplineWeights ] " << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef unsigned char PixelType;
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
// Software Guide : BeginLatex
// The CenteredRigid2DTransform applies a rigid transform in 2D space.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CenteredRigid2DTransform< double > TransformType;
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
// Software Guide : EndCodeSnippet
typedef itk::LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
// Software Guide : BeginCodeSnippet
typedef itk::MattesMutualInformationImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginCodeSnippet
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
// Software Guide : EndCodeSnippet
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
MetricType::Pointer metric = MetricType::New();
registration->SetMetric( metric );
metric->SetNumberOfHistogramBins( 20 );
metric->SetNumberOfSpatialSamples( 10000 );
// For consistent results when regression testing.
metric->ReinitializeSeed( 121212 );
if( argc > 4 )
{
// Define whether to calculate the metric derivative by explicitly
// computing the derivatives of the joint PDF with respect to the Transform
// parameters, or doing it by progressively accumulating contributions from
// each bin in the joint PDF.
metric->SetUseExplicitPDFDerivatives( atoi( argv[4] ) );
}
if( argc > 5 )
{
// Define whether to cache the BSpline weights and indexes corresponding to
// each one of the samples used to compute the metric. Enabling caching will
// make the algorithm run faster but it will have a cost on the amount of memory
// that needs to be allocated. This option is only relevant when using the
// BSplineTransform.
metric->SetUseCachingOfBSplineWeights( atoi( argv[5] ) );
}
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
// Software Guide : BeginLatex
// The \doxygen{CenteredRigid2DTransform} is initialized by 5 parameters,
// indicating the angle of rotation, the center coordinates and the
// translation to be applied after rotation. The initialization is done
// by the \doxygen{CenteredTransformInitializer}.
// The transform can operate in two modes, one assumes that the
// anatomical objects to be registered are centered in their respective
// images. Hence the best initial guess for the registration is the one
// that superimposes those two centers.
// This second approach assumes that the moments of the anatomical
// objects are similar for both images and hence the best initial guess
// for registration is to superimpose both mass centers. The center of
// mass is computed from the moments obtained from the gray level values.
// Here we adopt the first approach. The \code{GeometryOn()} method
// toggles between the approaches.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CenteredTransformInitializer<
TransformType, FixedImageType,
MovingImageType > TransformInitializerType;
TransformInitializerType::Pointer initializer
= TransformInitializerType::New();
initializer->SetTransform( transform );
initializer->SetFixedImage( fixedImageReader->GetOutput() );
initializer->SetMovingImage( movingImageReader->GetOutput() );
initializer->GeometryOn();
initializer->InitializeTransform();
// Software Guide : EndCodeSnippet
transform->SetAngle( 0.0 );
registration->SetInitialTransformParameters( transform->GetParameters() );
// Software Guide : BeginLatex
// The optimizer scales the metrics (the gradient in this case) by the
// scales during each iteration. Hence a large value of the center scale
// will prevent movement along the center during optimization. Here we
// assume that the fixed and moving images are likely to be related by
// a translation.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
const double translationScale = 1.0 / 128.0;
const double centerScale = 1000.0; // prevents it from moving
// during the optimization
optimizerScales[0] = 1.0;
optimizerScales[1] = centerScale;
optimizerScales[2] = centerScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;
optimizer->SetScales( optimizerScales );
optimizer->SetMaximumStepLength( 0.5 );
optimizer->SetMinimumStepLength( 0.0001 );
optimizer->SetNumberOfIterations( 400 );
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
try
{
registration->Update();
std::cout << "Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
typedef RegistrationType::ParametersType ParametersType;
ParametersType finalParameters = registration->GetLastTransformParameters();
const double finalAngle = finalParameters[0];
const double finalRotationCenterX = finalParameters[1];
const double finalRotationCenterY = finalParameters[2];
const double finalTranslationX = finalParameters[3];
const double finalTranslationY = finalParameters[4];
unsigned int numberOfIterations = optimizer->GetCurrentIteration();
double bestValue = optimizer->GetValue();
// Print out results
//
const double finalAngleInDegrees = finalAngle * 180 / itk::Math::pi;
std::cout << "Result = " << std::endl;
std::cout << " Angle (radians) " << finalAngle << std::endl;
std::cout << " Angle (degrees) " << finalAngleInDegrees << std::endl;
std::cout << " Center X = " << finalRotationCenterX << std::endl;
std::cout << " Center Y = " << finalRotationCenterY << std::endl;
std::cout << " Translation X = " << finalTranslationX << std::endl;
std::cout << " Translation Y = " << finalTranslationY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
typedef itk::Image< PixelType, Dimension > OutputImageType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[3] );
writer->SetInput( resample->GetOutput() );
writer->Update();
return EXIT_SUCCESS;
}
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images provided in
// \code{Examples/Data}, for example:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySlice.png}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \end{itemize}
//
// The second image is the result of intentionally shifting the first
// image by $20mm$ in $X$ and $20mm$ in
// $Y$. Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration1}. The example
// yielded the following results.
//
// \begin{verbatim}
// Translation X = 20
// Translation Y = 20
// \end{verbatim}
// These values match the true misalignment introduced in the moving image.
// Software Guide : EndLatex
|