1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageRegistrationMethod.h"
#include "itkAffineTransform.h"
#include "itkMatchCardinalityImageToImageMetric.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkAmoebaOptimizer.h"
#include "itkCenteredTransformInitializer.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkSquaredDifferenceImageFilter.h"
#include "itkFileOutputWindow.h"
//
// The following piece of code implements an observer
// that will monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate19 : public itk::Command
{
public:
typedef CommandIterationUpdate19 Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate19() {};
public:
typedef itk::AmoebaOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( ! itk::IterationEvent().CheckEvent( &event ) )
{
return;
}
std::cout << optimizer->GetCachedValue() << " ";
std::cout << optimizer->GetCachedCurrentPosition() << std::endl;
}
};
int main( int argc, char *argv[] )
{
if( argc < 3 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImagefile [differenceImage]" << std::endl;
std::cerr << " [initialTx] [initialTy]" << std::endl;
return EXIT_FAILURE;
}
itk::FileOutputWindow::Pointer fow = itk::FileOutputWindow::New();
fow->SetInstance( fow );
// The types of each one of the components in the registration methods should
// be instantiated. First, we select the image dimension and the type for
// representing image pixels.
//
const unsigned int Dimension = 2;
typedef float PixelType;
// The types of the input images are instantiated by the following lines.
//
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
typedef itk::AffineTransform< double, Dimension > TransformType;
typedef itk::AmoebaOptimizer OptimizerType;
typedef itk::MatchCardinalityImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
// Finally, the type of the interpolator is declared. The
// interpolator will evaluate the moving image at non-grid
// positions.
typedef itk:: NearestNeighborInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
// The registration method type is instantiated using the types of the
// fixed and moving images. This class is responsible for interconnecting
// all the components we have described so far.
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
// Each one of the registration components is created using its
// \code{New()} method and is assigned to its respective
// \doxygen{SmartPointer}.
//
MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
metric->MeasureMatchesOff();
// Each component is now connected to the instance of the registration method.
// \index{itk::RegistrationMethod!SetMetric()}
// \index{itk::RegistrationMethod!SetOptimizer()}
// \index{itk::RegistrationMethod!SetTransform()}
// \index{itk::RegistrationMethod!SetFixedImage()}
// \index{itk::RegistrationMethod!SetMovingImage()}
// \index{itk::RegistrationMethod!SetInterpolator()}
//
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer
fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer
movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
// In this example, the fixed and moving images are read from files. This
// requires the \doxygen{ImageRegistrationMethod} to acquire its inputs to
// the output of the readers.
//
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
// The registration can be restricted to consider only a particular region
// of the fixed image as input to the metric computation. This region is
// defined by the \code{SetFixedImageRegion()} method. You could use this
// feature to reduce the computational time of the registration or to avoid
// unwanted objects present in the image affecting the registration outcome.
// In this example we use the full available content of the image. This
// region is identified by the \code{BufferedRegion} of the fixed image.
// Note that for this region to be valid the reader must first invoke its
// \code{Update()} method.
//
// \index{itk::ImageRegistrationMethod!SetFixedImageRegion()}
// \index{itk::Image!GetBufferedRegion()}
//
fixedImageReader->Update();
movingImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
//
// Here we initialize the transform to make sure that the center of
// rotation is set to the center of mass of the object in the fixed image.
//
typedef itk::CenteredTransformInitializer< TransformType,
FixedImageType,
MovingImageType
> TransformInitializerType;
TransformInitializerType::Pointer initializer =
TransformInitializerType::New();
initializer->SetTransform( transform );
initializer->SetFixedImage( fixedImageReader->GetOutput() );
initializer->SetMovingImage( movingImageReader->GetOutput() );
initializer->MomentsOn();
initializer->InitializeTransform();
// The parameters of the transform are initialized by passing them in an
// array. This can be used to setup an initial known correction of the
// misalignment. In this particular case, a translation transform is
// being used for the registration. The array of parameters for this
// transform is simply composed of the rotation matrix and the translation
// values along each dimension.
//
// \index{itk::AffineTransform!GetNumberOfParameters()}
// \index{itk::RegistrationMethod!SetInitialTransformParameters()}
//
typedef RegistrationType::ParametersType ParametersType;
ParametersType initialParameters = transform->GetParameters();
double tx = 0.0;
double ty = 0.0;
if( argc > 6 )
{
tx = atof( argv[5] );
ty = atof( argv[6] );
}
initialParameters[4] = tx; // Initial offset in mm along X
initialParameters[5] = ty; // Initial offset in mm along Y
registration->SetInitialTransformParameters( initialParameters );
// At this point the registration method is ready for execution. The
// optimizer is the component that drives the execution of the
// registration. However, the ImageRegistrationMethod class
// orchestrates the ensemble to make sure that everything is in place
// before control is passed to the optimizer.
//
const unsigned int numberOfParameters = transform->GetNumberOfParameters();
OptimizerType::ParametersType simplexDelta( numberOfParameters );
// This parameter is tightly coupled to the translationScale below
const double stepInParametricSpace = 0.01;
simplexDelta.Fill( stepInParametricSpace );
optimizer->AutomaticInitialSimplexOff();
optimizer->SetInitialSimplexDelta( simplexDelta );
optimizer->SetParametersConvergenceTolerance( 1e-4 ); // about 0.005 degrees
optimizer->SetFunctionConvergenceTolerance( 1e-6 ); // variation in metric value
optimizer->SetMaximumNumberOfIterations( 200 );
// This parameter is tightly coupled to the stepInParametricSpace above.
double translationScale = 1.0 / 1000.0;
typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales( numberOfParameters );
optimizerScales[0] = 1.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = 1.0;
optimizerScales[3] = 1.0;
optimizerScales[4] = translationScale;
optimizerScales[5] = translationScale;
optimizer->SetScales( optimizerScales );
//
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate19::Pointer observer = CommandIterationUpdate19::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
// The registration process is triggered by an invocation of the
// \code{Update()} method. If something goes wrong during the
// initialization or execution of the registration an exception will be
// thrown. We should therefore place the \code{Update()} method
// in a \code{try/catch} block as illustrated in the following lines.
//
try
{
// print out the initial metric value. need to initialize the
// registration method to force all the connections to be established.
registration->Initialize();
std::cout << "Initial Metric value = "
<< metric->GetValue( initialParameters )
<< std::endl;
// run the registration
registration->Update();
std::cout << "Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
// In a real application, you may attempt to recover from the error in the
// catch block. Here we are simply printing out a message and then
// terminating the execution of the program.
//
//
// The result of the registration process is an array of parameters that
// defines the spatial transformation in an unique way. This final result is
// obtained using the \code{GetLastTransformParameters()} method.
//
// \index{itk::RegistrationMethod!GetLastTransformParameters()}
//
ParametersType finalParameters = registration->GetLastTransformParameters();
// In the case of the \doxygen{AffineTransform}, there is a straightforward
// interpretation of the parameters. The last two elements of the array
// corresponds to a translation along one spatial dimension.
//
const double TranslationAlongX = finalParameters[4];
const double TranslationAlongY = finalParameters[5];
// The optimizer can be queried for the actual number of iterations
// performed to reach convergence.
//
const unsigned int numberOfIterations
= optimizer->GetOptimizer()->get_num_evaluations();
// The value of the image metric corresponding to the last set of parameters
// can be obtained with the \code{GetValue()} method of the optimizer. Since
// the AmoebaOptimizer does not yet support a call to GetValue(), we will
// simply re-evaluate the metric at the final parameters.
//
const double bestValue = metric->GetValue(finalParameters);
// Print out results
//
std::cout << "Result = " << std::endl;
std::cout << " Translation X = " << TranslationAlongX << std::endl;
std::cout << " Translation Y = " << TranslationAlongY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
// It is common, as the last step of a registration task, to use the
// resulting transform to map the moving image into the fixed image space.
// This is easily done with the \doxygen{ResampleImageFilter}. Please
// refer to Section~\ref{sec:ResampleImageFilter} for details on the use
// of this filter. First, a ResampleImageFilter type is instantiated
// using the image types. It is convenient to use the fixed image type as
// the output type since it is likely that the transformed moving image
// will be compared with the fixed image.
//
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
// A transform of the same type used in the registration process should be
// created and initialized with the parameters resulting from the
// registration process.
//
// \index{itk::ImageRegistrationMethod!Resampling image}
//
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
std::cout << "Final Transform " << std::endl;
finalTransform->Print( std::cout );
// Then a resampling filter is created and the corresponding transform and
// moving image connected as inputs.
//
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
// As described in Section \ref{sec:ResampleImageFilter}, the
// ResampleImageFilter requires additional parameters to be
// specified, in particular, the spacing, origin and size of the output
// image. The default pixel value is also set to the standard label
// for "unknown" or background. Finally, we need to set the
// interpolator to be the same type of interpolator as the
// registration method used (nearest neighbor).
//
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 0 );
resample->SetInterpolator( interpolator );
// The output of the filter is passed to a writer that will store the
// image in a file. An \doxygen{CastImageFilter} is used to convert the
// pixel type of the resampled image to the final type used by the
// writer. The cast and writer filters are instantiated below.
//
typedef unsigned short OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
FixedImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
// The filters are created by invoking their \code{New()}
// method.
//
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
// The \code{Update()} method of the writer is invoked in order to trigger
// the execution of the pipeline.
//
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
//
// The fixed image and the transformed moving image can easily be compared
// using the \code{SquaredDifferenceImageFilter}. This pixel-wise
// filter computes the squared value of the difference between homologous
// pixels of its input images.
//
typedef itk::SquaredDifferenceImageFilter<
FixedImageType,
FixedImageType,
OutputImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resample->GetOutput() );
// Its output can be passed to another writer.
//
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( difference->GetOutput() );
if( argc > 4 )
{
writer2->SetFileName( argv[4] );
writer2->Update();
}
return EXIT_SUCCESS;
}
|