File: ImageRegistration5.py

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (207 lines) | stat: -rw-r--r-- 6,647 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#==========================================================================
#
#   Copyright Insight Software Consortium
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#          http://www.apache.org/licenses/LICENSE-2.0.txt
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#
#==========================================================================*/

import itk
from sys import argv


#
#  Check input parameters
#  INPUTS(fixedImage):  {BrainProtonDensitySliceBorder20.png}
#  INPUTS(movingImage): {BrainProtonDensitySliceRotated10.png}
#
if len(argv) < 4:
    print 'Missing Parameters'
    print 'Usage: ImageRegistration5.py fixedImageFile  movingImageFile outputImagefile'
    exit()


#
#  Define data types
#
FixedImageType  = itk.Image[itk.F, 2]
MovingImageType = itk.Image[itk.F, 2]
OutputImageType = itk.Image[itk.UC, 2]
TransformType   = itk.CenteredRigid2DTransform


#
#  Read the fixed and moving images using filenames
#  from the command line arguments
#
fixedImageReader  = itk.ImageFileReader[FixedImageType].New()
movingImageReader = itk.ImageFileReader[MovingImageType].New()

fixedImageReader.SetFileName(  argv[1] )
movingImageReader.SetFileName( argv[2] )

fixedImageReader.Update()
movingImageReader.Update()

fixedImage   = fixedImageReader.GetOutput()
movingImage  = movingImageReader.GetOutput()


#
#  Instantiate the classes for the registration framework
#
registration = itk.ImageRegistrationMethod[FixedImageType, MovingImageType].New()
imageMetric  = itk.MeanSquaresImageToImageMetric[FixedImageType, MovingImageType].New()
transform    = TransformType.New()
optimizer    = itk.RegularStepGradientDescentOptimizer.New()
interpolator = itk.LinearInterpolateImageFunction[FixedImageType, itk.D].New()

registration.SetOptimizer(      optimizer   )
registration.SetTransform(      transform   )
registration.SetInterpolator(   interpolator)
registration.SetMetric(         imageMetric )

registration.SetFixedImage(  fixedImage     )
registration.SetMovingImage( movingImage    )

registration.SetFixedImageRegion(  fixedImage.GetBufferedRegion() )


#
# Initial transform parameters
#
transform.SetAngle( 0.0 );

# center of the fixed image
fixedSpacing = fixedImage.GetSpacing()
fixedOrigin  = fixedImage.GetOrigin()
fixedSize    = fixedImage.GetLargestPossibleRegion().GetSize()

centerFixed  = ( fixedOrigin.GetElement(0) + fixedSpacing.GetElement(0) * fixedSize.GetElement(0) / 2.0,
                 fixedOrigin.GetElement(1) + fixedSpacing.GetElement(1) * fixedSize.GetElement(1) / 2.0 )

# center of the moving image
movingSpacing= movingImage.GetSpacing()
movingOrigin = movingImage.GetOrigin()
movingSize   = movingImage.GetLargestPossibleRegion().GetSize()

centerMoving = ( movingOrigin.GetElement(0) + movingSpacing.GetElement(0) * movingSize.GetElement(0) / 2.0,
                 movingOrigin.GetElement(1) + movingSpacing.GetElement(1) * movingSize.GetElement(1) / 2.0  )

# transform center
center       = transform.GetCenter()
center.SetElement( 0, centerFixed[0] )
center.SetElement( 1, centerFixed[1] )

# transform translation
translation  = transform.GetTranslation()
translation.SetElement( 0, centerMoving[0] - centerFixed[0] )
translation.SetElement( 1, centerMoving[1] - centerFixed[1] )

initialParameters = transform.GetParameters()

print "Initial Parameters: "
print "Angle: %f" % (initialParameters.GetElement(0), )
print "Center: %f, %f" % ( initialParameters.GetElement(1), initialParameters.GetElement(2) )
print "Translation: %f, %f" % (initialParameters.GetElement(3), initialParameters.GetElement(4))

registration.SetInitialTransformParameters( initialParameters )


#
# Define optimizer parameters
#

# optimizer scale
translationScale = 1.0 / 1000.0

optimizerScales  = itk.Array[itk.D](transform.GetNumberOfParameters())
optimizerScales.SetElement(0, 1.0)
optimizerScales.SetElement(1, translationScale)
optimizerScales.SetElement(2, translationScale)
optimizerScales.SetElement(3, translationScale)
optimizerScales.SetElement(4, translationScale)

optimizer.SetScales( optimizerScales )
optimizer.SetMaximumStepLength( 0.1 )
optimizer.SetMinimumStepLength( 0.001 )
optimizer.SetNumberOfIterations( 200 )


#
# Iteration Observer
#
def iterationUpdate():
    currentParameter = transform.GetParameters()
    print "M: %f   P: %f %f %f %f %f " % ( optimizer.GetValue(),
                                 currentParameter.GetElement(0),
                                 currentParameter.GetElement(1),
                                 currentParameter.GetElement(2),
                                 currentParameter.GetElement(3),
                                 currentParameter.GetElement(4) )

iterationCommand = itk.PyCommand.New()
iterationCommand.SetCommandCallable( iterationUpdate )
optimizer.AddObserver( itk.IterationEvent(), iterationCommand )

print "Starting registration"


#
# Start the registration process
#
registration.Update()


#
# Get the final parameters of the transformation
#
finalParameters = registration.GetLastTransformParameters()

print "Final Registration Parameters "
print "Angle in radians  = %f" % finalParameters.GetElement(0)
print "Rotation Center X = %f" % finalParameters.GetElement(1)
print "Rotation Center Y = %f" % finalParameters.GetElement(2)
print "Translation in  X = %f" % finalParameters.GetElement(3)
print "Translation in  Y = %f" % finalParameters.GetElement(4)

# Now, we use the final transform for resampling the moving image.
resampler = itk.ResampleImageFilter[MovingImageType, FixedImageType].New()
resampler.SetTransform( transform    )
resampler.SetInput(     movingImage  )

region = fixedImage.GetLargestPossibleRegion()

resampler.SetSize( region.GetSize() )

resampler.SetOutputSpacing( fixedImage.GetSpacing() )
resampler.SetOutputOrigin(  fixedImage.GetOrigin()  )
resampler.SetOutputDirection(  fixedImage.GetDirection()  )
resampler.SetDefaultPixelValue( 100 )


#
# Cast for output
#
outputCast = itk.RescaleIntensityImageFilter[FixedImageType, OutputImageType].New()
outputCast.SetInput(resampler.GetOutput())


#
# Write the resampled image
#
writer = itk.ImageFileWriter[OutputImageType].New()

writer.SetFileName( argv[3] )
writer.SetInput( outputCast.GetOutput() )
writer.Update()